
Chapter 3
Entity Resolution

3.1 Introduction

Entity Resolution (ER) is the problem of devising algorithmic solutions for
determining when two entities refer to the same underlying entity [66]. The problem
is very common in almost all communities that deal with a lot of data, including
knowledge discovery and data mining, databases and the Semantic Web. It is also
a hard problem, despite (or perhaps because) of its common-sense nature, since
it generally does not take specialized knowledge for a human being to answer
the question of when two things are the same. ER problems widely exist in both
industrial and non-industrial applications, and big technology companies often task
entire teams to address the problem in its various guises. Multiple commercial and
research solutions exist, some based on work that was originally done many decades
ago [41]. Many books and special issues have also been dedicated to the topic.
Although not humanly possible to cover ER in all its depth in this chapter, we
attempt to synthesize the field in a conceptually meaningful way that will provide
practical insights into why ER should be given special attention in any robust
domain-specific KGC pipeline.

By way of a running example, consider the illustration in Fig. 3.1. Let us
optimistically assume that complete and correct named entity recognition and
relation extraction systems were applied to a corpus, yielding knowledge graph
fragments. Clearly, the two nodes Nadal and Rafael Nadal extracted from the two
documents need to be resolved since they are referring to the same underlying entity.
In general, the problem is not unique to natural language sources, and can emerge
even when we are constructing knowledge graphs over semi-structured (or even
structured) raw sources like log files and XML. That being said, the natural language
version of the problem is still special since one could potentially use linguistic
clues to determine when extracted pronouns in a document refer to the same entity
(anaphora or co-reference resolution). When extractions must be linked across
documents, the problem is generally referred to as cross-document coreference

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
M. Kejriwal, Domain-Specific Knowledge Graph Construction, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-030-12375-8_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12375-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-12375-8_3

34 3 Entity Resolution

Fig. 3.1 An illustration of the cross-document ER problem. Only some extractions are shown
from each of the documents, with the same color used if the nodes should be resolved together.
The first document illustrates the ‘provenance’ of the KG nodes and relations. In general, each KG
node or relation can trace its provenance to a set of co-referenced extracted mentions

resolution. Just because the document sources are separate doesn’t preclude the use
of linguistic cues and features.

However, the problem of ER is much broader, and the earliest known instances
of it emerged in the patient linking and biomedical literature almost 50 years ago
[123]. Even today, much more work has been done on the structured version of the
problem (in both the database and Semantic Web communities) than in the natural
language community [57, 96]. Much of the work in the structured data communities
can be synthesized in a somewhat unified manner using similar concepts and terms.
This synthesis, though brief, will be the focus of this chapter. Because of the nature
of English language data as opposed to structured data, the NLP community has
been forced to take a somewhat different approach to the problem. A good review
of co-reference resolution may be found in [122].

In much work on ER, it was often the case that single-source, single-schema ER
(often called deduplication) was the main focus of the research, along with close
variants such as multi-source, single-schema ER. Recent research has attempted
to address the multi-schema version of the problem [89], especially in KG-centric
communities like the Semantic Web.

3.2 Challenges and Requirements

Before diving into solutions, we provide some intuition on why ER has proven
so difficult to automate and algorithmically encode. Figure 3.2 provides some
insight, despite its simplicity. The most important challenge in automating ER is the

3.2 Challenges and Requirements 35

Fig. 3.2 An illustration of challenges that must be fulfilled to resolve entities in real-world
knowledge graphs. Note that, even when graphs are not ‘Web scale’ a scalability challenge still
arises because of the quadratic theoretical complexity of ER

ambiguity of the information extracted. Ambiguity is much harder to resolve in the
presence of noise, and without access to underlying text, but even after accounting
for those, it is not completely obvious how a machine is supposed to figure out that
‘Nadal’ in the first document refers to ‘Rafael Nadal’ or ‘Toni Nadal’. In the much
harder version of the problem, one would also have to figure out that ‘Hamburg’ in
the first document is actually referring to the ‘Masters Series Hamburg’ and not the
location Hamburg, as in the last document. More generally, because of nicknames
(e.g., Pistol Pete vs. Pete Sampras) and other alternatives, one may also have a hard
time coming up with viable candidates unlike the previous two cases, where one is
faced with the finer-grained problem of choosing among viable linking candidates
for a given node. Additionally, as in the natural language version of the problem,
there is also the issue of having to deal with singleton nodes i.e. those that show up
only once in the corpus and have no links to any other nodes.

Perhaps the most important challenge for an AI system attempting to counter
the ambiguity in ER is that humans seem to draw on background, often intuitive,
knowledge (often without even conscious reasoning) in several common ER
domains that can be hard to pin down precisely in code. A computational challenge
that will become more apparent in the subsequent discussion is scale, since naïve
solutions to ER grow quadratically with the number of nodes in the KG [42].
As the introduction also pointed out, multi-schema ER is still very much in the
nascent stages of research compared to the deduplication and single-schema cases.
For knowledge graph construction systems that control the underlying reference
ontologies of information extraction systems, multi-source, single-schema ER is
still often applicable. However, in the most general case, multi-schema ER is
necessary when constructing knowledge graphs over many sources, documents and

36 3 Entity Resolution

tables, and across the outputs of multiple (not often transparent) systems. Building
such an ER system is still a challenge, especially if the domain is unusual in some
way and there is little guidance by way of prior work in academia, or precedent in
industry. Good performance from machine learning-based ER systems (the state-
of-the-art) may also require a lot of training data, which is hard to acquire, since
regular sampling and annotation does not work well in ER due to data skew
(intuitively, this can be understood by considering that one entity, if randomly paired
with another entity, will almost always never be a duplicate pair). While modern
machine learning techniques can partially deal with the challenge of limited labeled
data, human-level performance is yet to be achieved in the general case, and data
augmentation, transfer learning and semi-supervised learning techniques from other
machine learning applications (and theory) have yet to make a strong mark on ER.
Finally, noise in the input, usually because of the imperfections of IE systems but
also due to incompleteness in the original data, also have to be dealt with, since KGs
are rarely constructed over data sources that are already easy to reason with.

Given these challenges, it should not be surprising that real-world ER systems
perform well in some aspects, such as automation or scalability, but may be deficient
in others (e.g., heterogeneity) [85, 86]. Figure 3.2 captures these requirements
visually.

Automation First, given the increasing expense of data scientists and subject
matter experts, an ideal ER solution should exhibit a high degree of automation.
This requirement can be met by a non-adaptive system, but such a system would
have low robustness or real-world utility. If the system is adaptive and uses some
form of machine learning, the requirement can only be fulfilled by algorithms that
are minimally supervised (i.e. use small amounts of training data) or more rarely,
completely unsupervised. An alternate option that has been explored in industrial
ER is to leverage crowdsourcing or a professional annotation service. This option is
limited by both cost and scalability.

Scalability The size and growth in data ecosystems like Wikipedia, social media,
Linked Open Data, webpages, sensor data and schema.org markup (Chap. 5)
suggests that building a feasible ER system requires devising solutions that meet
requirements of elastic scalability, preferably requiring computational resources
that increase only linearly in the size of the data. While for many algorithmic
pipelines, this is an achievable goal, it is much harder for ER. The reason is that ER
is inherently (and theoretically) quadratic as we subsequently describe. Bringing
down this quadratic complexity to almost-linear complexity is a field of research in
its own right (called blocking).

Heterogeneity Earlier, we already suggested that multi-schema ER is becoming
more important for KG-centric applications. For the purposes of ER, multi-schema
heterogeneity can be broken down into two separate (but inter-related) problems.
The first is type heterogeneity, which arises when different ontologies are used for
different raw data elements. For example, one IE system may produce fine-grained

3.2 Challenges and Requirements 37

types such as Inventor and Politician, while another may produce coarser-grained
types (e.g., Employed Person and Unemployed Person). The problem is further
compounded by potential noise in type annotations, and by the presence of
overlapping but not perfectly aligning type hierarchies across different sources
and IE sub-systems. For example, is an inventor employed? The problem is more
common than it seems, since the ontologies of many domains and datasets are
developed relatively independently. Except in a few domains (such as the Gene
Ontology in the biology domain [7]), heterogeneous ontologies and type-sets are
the norm, rather than exceptions.

The second heterogeneity problem is property heterogeneity (the matching of
property or edge labels across ontologies) that tends to arise once types are aligned.
For example, let us assume that an ER system has correctly managed to address
type heterogeneity by aligning Inventor (in one ontology) with Entrepreneur (in
a second ontology). The ER system would also have to deduce such alignment
relationships between properties such as :co-founder_of and :organization. As these
examples show, alignment does not necessarily imply relationships of subsumption
or equivalence, but is simply an empirical determination of sufficient entity overlap.
Just like other processes in KGC, like IE, instance-driven ontology alignment is
itself a problem that continues to be researched and has not been solved with human-
level performance [1].

Domain-adaptation Finally, if the ER system is to be re-used across domains, it
must also be domain-adaptable in its workings. By domain-adaptable, we do not
mean that the ER system has to be a static one-size-fits-all model that magically
works well across all domains, or even that it needs to be trained in one domain but
is expected to perform well in a separate test domain (transfer learning). Rather,
it must have the ability to adapt as the domain changes. In this sense, domain-
adaptability is not necessarily mutually exclusive from domain-specificity, but refers
to the meta-ability of an ER system to be re-trained, re-deployed and re-used on a
different domain with minimal overhead. Domain-adaptability is hard to formalize;
it is a practical and empirical constraints. In practice, no ER system is completely
domain-adaptable (some assumptions built into the system are directly influenced
by a use-case) or completely domain-specific (some re-use is always possible, and
more re-use is generally possible in related domains). However, some systems are
so strongly influenced by a particular use-case (e.g., product Entity Resolution) that
adapting them to other domains is equivalent to writing the system from scratch.
Event resolution is emerging as an excellent example of this phenomenon. Although
event resolution is still heavily in flux as a research area, with a growing body
of output, the best systems (both for event resolution and extraction e.g., BBN
ACCENT [153]) tend to be heavily tuned not only for events, in general, but specific
types of event. It is not unreasonable to suppose that an event resolution system
designed for geopolitical events may not do as well if transferred to concert or
entertainment events. Characterizing and evaluating such transferability is currently
an open research problem.

38 3 Entity Resolution

In summary, there is a natural tradeoff between domain-adaptability and automa-
tion, and the two tend to influence each other in the design phase. For domain-
specific ER systems, it is unlikely that (even with reasonable training data) the
system will be able to resolve entities that look very different from the entities
the system was designed to resolve. Modern representation learning techniques,
such as word and graph embeddings [90, 132], have alleviated concerns about
domain adaptation to a certain extent, since embeddings can be trained on unlabeled
corpora. There is no free lunch however, since training good embeddings requires
a sufficiently large corpus. In some domains, availability of such corpora may be
limited.

3.3 Two-Step Framework

Even in early research, the quadratic complexity of pairwise ER was well recognized
[123]. Given two data sources G1 and G2, where the set of non-literal entities in
graph G is represented by the symbol E, a naïve ER system would evaluate all
possible entity pairs. Assuming constant cost per evaluation, the run-time would be
O(|E1||E2|). In the rest of this section, for two entity sets E1 and E2, an entity pair
(e1, e2) is denoted as bilateral iff e1 ∈ E1 and e2 ∈ E2. Given a collection of entities
from E1 ∪ E2, two entities e1 and e2 are said to be bilaterally paired iff (e1, e2) is
bilateral.

To mitigate the quadratic complexity of generating all possible bilateral pairs, a
two-step approach is adopted, as illustrated in Fig. 3.3 [41]. The first step, blocking,
uses a many-many function called a blocking key to cluster approximately similar
entities into overlapping blocks [42]. Only entities sharing a block are bilaterally
paired and become candidates for further evaluation by a link specification function
in the similarity step [172]. The link specification function may be either Boolean
or probabilistic, and is used to indicate whether a candidate entity pair represents
the same underlying entity.

Because ER developed as an important research area in the database community,
the majority of ER research still assumes input databases to be structurally
homogeneous i.e. if more than one database is input to the ER system, the databases

Fig. 3.3 The typical two-step workflow adopted for Entity Resolution

3.3 Two-Step Framework 39

are assumed to have the same schema and same semantics [41, 57]. In the knowledge
graph world, this would be equivalent to matching entities between knowledge
graphs that have the same underlying ontology i.e. sets of concepts and proper-
ties. An important special application of structural homogeneity is deduplication,
whereby matching entities in a single dataset must be found. Although structural
homogeneity may seem like a limitation (which in some applications, can be severe),
it is also often the case that ER is the next step after information extraction in a
domain-specific KGC pipeline, and a single ontology is involved. Thus, the goal of
ER is to deduplicate sets of entities extracted and typed according to this ontology.
In the rest of this section, structural homogeneity is assumed. Later, we will briefly
discuss extending the two-step model to include structural heterogeneity, but for an
extensive discussion refer the interested reader to [86].

3.3.1 Blocking

Blocking is a preprocessing step that is used to mitigate the quadratic complexity of
applying the link specification function on all (unordered) pairs of mention nodes in
the knowledge graph. Given a set M of mention nodes (i.e. ‘raw’ entities extracted
from documents), this exhaustive set contains (|M||M| − 1)/2 distinct unordered
pairs, which is an untenable number of link specification computations for |M| �
1000. In the most general case, blocking methods use a many-many function called
a blocking key to cluster approximately similar entities into overlapping blocks.

Definition 3.1 (Blocking Key) Given a set M of mention nodes, a blocking key
K is a many-many function that takes a mention m ∈ M as input and returns a
non-empty set of literals, referred to as the blocking key values (BKVs) of m.

Let K(m) denote the set of BKVs assigned to the mention m ∈ M by the
blocking key K . Furthermore, without loss of generality, the literals in the definition
above are all assumed to be strings.

Example 3.1 (Blocking Key) Assuming the publication domain, with the Publica-
tion concept being the domain of properties Author, Venue and Year, and with the
special property : label indicating the title of the publication, one possible blocking
key K for deduplicating citations might be overlap(Author(m1), Author(m2)) ∧
commonT oken(V enue(m1), V enue(m2)). This rule says that two publication
mentions should share a block if their titles have at least three common tokens,
or their venues have a common token (e.g., ACM KDD vs. KDD). We return to this
example later in the context of automatically ‘learning’ good blocking keys. Note
that this blocking key can generate multiple blocking key values for each node. More
precisely, if a mention node has j authors and t tokens in its venue, the number of
possible BKVs for the node is j + t . If any of these j + t BKVs intersect with
the BKV set of another node, they would fall within the same block (labeled by its
BKV). The two nodes would share more than one block if they share more than

40 3 Entity Resolution

one BKV. Intuitively, this would happen when they share more than one common
token across their venue attributes, or they share more than one author, or they share
an author and a common token in their venue attributes (or any combination of
the three options). For reasons covered shortly, some blocks may end up being
discarded. In many situations, therefore, the higher the number of shared blocks
between two mentions, the higher the probability they will actually be compared in
the similarity step.

Given a blocking key K , a candidate set C ⊆ M × M of mention pairs can be
generated by a blocking method using the BKVs of the mentions. We describe three
influential methods that are generally included in established surveys [42], and all
of which assume that a blocking key K is already specified by a user. Depending on
the method, K must also obey some constraints. Subsequently, we also describe the
automatic learning of good blocking keys.

3.3.1.1 Traditional Blocking

Given a blocking key K , an obvious solution is to generate the candidate set C as
the set {(mi,mj)|mi,mj ∈ M ∧ mi
= mj ∧ K(mi) ∩ K(mj)
= {}}. Put simply,
if two mention nodes share a blocking key then they would be paired and inserted
into C. Note that the definition of C as a set further implies that mi and mj may
share multiple BKVs, although in the earliest definitions of this so-called traditional
blocking, a mention was allowed to have exactly one BKV (hence, blocks could not
overlap but represented a partition, with singleton blocks automatically discarded
from further comparison).

A problem with traditional blocking approach is that of data skew. Consider,
for example, two mentions from a People knowledge graph that are blocked based
on the tokens in their last names. Last name frequencies in many countries tend
to exhibit skew (a Zipf-like distribution) for some values (e.g. Smith in English-
speaking countries). A consequence of the skew is that the run-time of the blocking
method ends up being roughly proportional to the number of pairs generated by the
largest block. This implies that run-time is still roughly quadratic in the number
of mentions, unlike state-of-the-art blocking methods, where run-time tends to be
slightly super-linear.

Despite this problem, traditional blocking is often the first line of attack in
practical systems. In recent years, researchers have modified traditional blocking
to handle the large blocks that result from skew. A simple method that is easy to
implement and difficult to outperform is block purging. The premise of the method
is that, with a sufficiently expressive blocking key, blocks that are too large can be
safely ignored. Such blocks are most likely indexed by BKVs that are equivalent
to stop-words like the or an. The algorithm takes a purging threshold as an input
parameter, and discards all blocks that have more pairs than this threshold. The
threshold may be learned from the data, and tends to be empirically robust to good
default values as long as the default value is not too low.

3.3 Two-Step Framework 41

Fig. 3.4 An illustration of the Sorted Neighborhood workflow

3.3.1.2 Sorted Neighborhood

Another influential blocking method that was fundamentally designed to guarantee
a bound on the size of the candidate set is the Sorted Neighborhood (SN) method,
also known as merge-purge [76]. The algorithm works as follows. First, a single
blocking key value (BKV) is generated for each mention using a many-one blocking
key. Next, the BKVs are used as sorting keys to impose an ordering on the mentions.
Finally, a window of constant size w is slid over the sorted list. All mentions sharing
a window are paired and added to the candidate set. Figure 3.4 illustrates a workflow
with a sliding window of size 3. We assume that the single BKV is generated by
concatenating the last name of the first author of the publication with the year of the
publication.

The sliding window has two implications for candidate set generation. First,
mentions with different blocking key values may still get paired. This happens when
the window straddles mention IDs in the list that have consecutively sorted BKVs
(e.g., gff dt5 and llg6y5 get paired in Fig. 3.4). Second, some mentions with the
same blocking key value may not get paired. For example, in Fig. 3.4, if the BKV
for node gmhq1 had been Kejriwal2013 instead of Kejriwal2014, and the window
size had been 2 instead of 3, then the node pair {gghy1, gmhq1} would not be added
to the candidate set.

Assuming that the window size w is much smaller than the total number of
mentions, Sorted Neighborhood has time and space complexity that is linear in the
size of the data. For this reason, it has endured as a popular blocking technique,
especially when inputs are highly structured and it is possible to devise good
blocking keys that yield a single, reliable BKV per mention. Numerous variations
now exist, including implementations in Big Data architectures like Hadoop and
MapReduce [95]. In general, the primary differences between the variants and
the original version are input data types (e.g., XML Sorted Neighborhood vs.
Relational), constraints on blocking keys and tuning mechanisms for the sliding
window parameter (e.g. adaptive vs. constant) to achieve maximal performance in
the similarity stage.

42 3 Entity Resolution

The main disadvantage of SN algorithms for KG-centric deduplication is their
reliance on a single-valued blocking key. The authors of the original SN algorithm
recognized this as a serious limitation and proposed multi-pass SN, whereby
multiple blocking keys (each of which would still have to be single-valued) could
be used to improve coverage. For a constant number of passes, the run-time of
the original method is not affected asymptotically. Practical scaling is achieved by
limiting the number of passes to the number of cores in the processor.

However, because even in multi-pass SN, each blocking key still remains
single-valued, the use of expressive blocking keys (or even simple token-based
set similarity measures that have high redundancy) is precluded. Extending SN
to account for heterogeneous data sources is also non-trivial. For this reason, the
application of Sorted Neighborhood to knowledge graphs and other heterogeneous,
semi-structured data sources has been limited. The use of a simple blocking method
such as traditional blocking (combined with skew-compensating measures like
block purging) has remained popular for that reason.

3.3.1.3 Canopies

Clustering methods such as Canopies have also been successfully applied to
blocking [112]. The basic algorithm takes a distance function and two threshold
parameters t ight ≥ 0 and loose ≥ t ight , and operates in the following way. First,
a seed mention m is randomly chosen from M . All mentions that have distance less
than loose are assigned to the canopy represented by m. Among these mentions, the
mentions with distance less than t ight (from the seed mention) are removed from M

and not considered further. Another seed mention is now chosen from all mentions
still in M , and the process continues till all points have been assigned to at least one
canopy.

In the Canopies framework, each canopy represents a block. However, unlike
more typical methods like Sorted Neighborhood, Canopies does not rely on a
blocking key, and instead takes a distance function as input. For this reason, at
least one work has referred to it as an ‘instance-based’ blocking method, and distin-
guished it from ‘feature-based’ blocking methods such as Sorted Neighborhood and
Traditional Blocking.

Similar to other popular blocking methods like Traditional Blocking and Sorted
Neighborhood, several variants of Canopies have been proposed over the years,
but the basic framework continues to be popular. For example, a nearest-neighbors
method could be used for clustering mentions, rather than a threshold-based method.
In yet another variant, a blocking key can be used to first generate a set of BKVs
for each mention, and Canopies can then be executed by performing distance
computations on the BKV sets of mentions, rather than directly on the mentions
themselves. Because this variant relies on a blocking key, it can no longer be
considered an instance-based blocking method.

3.3 Two-Step Framework 43

For the distance function, the method has been found to work well with (the
distance version of) a number of token-based set similarity measures, including
Jaccard and cosine similarity [12], but in principle, many other distance functions
can be used.

3.3.1.4 Research Frontier: Learning Blocking Keys

Earlier, we presented an example of a blocking key overlap(Author(m1),

Author(m2)) ∧ commonT oken(V enue(m1), V enue(m2)). This key, while
intuitive, has some severe drawbacks. First, it would cluster together all papers
authored by the same author into one single block. Some authors have many
hundreds of papers, and some others collaborate with others who also have hundreds
of papers. It is quite likely that, by itself, a rule such as this would end up placing
a large number of publication mentions in a single block, which would negate the
complexity benefits of blocking. A similar problem occurs with the second part
of the rule, which says that a common token in venues is all that’s required for
two publication mentions to get blocked together. Tokens like ACM and IEEE are
very common in venue titles (at least in Computer Science and Engineering), and
once again, we would face the problem of having far too many mentions (the vast
majority of which are non-matching) placed in one block.

In general, we note that the problem of data skew cannot really be avoided, unless
the rules are extremely precise. Because there is a tradeoff between precision and
recall in most real-world AI systems, the complexity reductions entailed by blocking
would end up having a high cost in terms of lost recall. The goal of blocking always
is to try and reduce complexity with minimal loss in recall. The blocking methods do
provide some respite from data skew, if tuned correctly. For example, block purging
would remove blocks that have too many mentions from further consideration in the
similarity step. However, the problem with the blocking rule above is that a ‘big’
block would also contain many matching pairs along with non-matching pairs of
mentions. Removing a big block would reduce complexity, but would yield recall
that is almost trivially low.

This argument shows that, even with good blocking methods in place, the quality
of the blocking key itself is very important for achieving a good tradeoff between
recall and complexity reduction. Devising such a blocking key was once the turf of
domain experts and knowledge engineers (and in many domains, still is), but with
the advent of machine learning, it has been found that good rules can be learned
automatically using a training set of labeled duplicate and non-duplicate mention
node pairs.

The general idea is to frame the problem as that of learning rules in Disjunctive
Normal Form (DNF). DNF formulae can technically be used to represent any
propositional formula, but in practice, some restrictions are imposed (e.g., negations

44 3 Entity Resolution

of blocking predicates are not allowed, since this could make the blocking step
intractable). The optimization function can be informally stated as that of learning a
DNF formula such that: (1) the formula yields True for pairs of nodes in the positive
training set, and (2) the formula yields False for pairs of nodes in the negative
training set. It turns out that this problem can be decomposed as the famous Red-
Blue Set Covering problem, which is known to be NP-hard. However, the problem
is well-explored in the literature, and even a relatively greedy approach offers some
good guarantees. In the few (but still growing) literature on blocking key learning,
greedy algorithms were used to solve the reduced version of DNF blocking key
learning. For more details, we refer the reader to fairly recent work in [87, 88]
and [148].

3.3.2 Similarity

Once obtained, the candidate set C of mention pairs must undergo similarity
computations to determine, whether probabilistically or deterministically, the subset
of C that comprises duplicate mention pairs. In an i.i.d (independent and identically
distributed) formalism, each mention pair can be independently assigned a score,
with higher scores indicating greater likelihood of the pair being a duplicate pair.
Although scores are typically normalized so that they lie between [0, 1], there is
controversy about interpreting them as probabilities. We sidestep this controversy
by continuing to refer to these numbers as scores.

Two issues now remain, one of which is concerned more with practice, and
the other with theory. First, what methods do we use to obtain the scores in the
first place? Intuitively, the ‘goodness’ of every such method should be measured
by comparing against the perfect outcome i.e. the ground-truth. An ideal method
that has knowledge of the complete ground truth would assign a score of 1.0 to
every duplicate pair, and 0.0 to every non-duplicate pair. Subsequently, we present
some formal methods for measuring performance using this principle. In practice, a
validation or development set of labeled pairs can be used to select and tune methods
to yield (by way of expectation) the best performing distribution of scores.

Second, given that scores output by a practical method will lie between 0.0
and 1.0, and will not necessarily be binary, how should one use these scores to
‘partition’ the set C into sets of duplicate pairs and non-duplicate pairs? There is
a well-known theoretical model in the early ER literature known as the Fellegi-
Sunter model, named after the scientists who first formulated it. The model generally
requires not one but two (not necessarily distinct) thresholds to achieve a desired
optimal tradeoff between the often conflicting goals of minimizing false positives
and false negatives (which affect both precision and recall; see Sect. 3.4). The
intuition behind using two thresholds is that they partition the set of mention pairs
into three sets (matches, non-matches and possible matches i.e. pairs requiring
manual review). To compute the score that will be compared to these thresholds,
the ratio of conditional probabilities (with the condition based on whether the pair if

3.3 Two-Step Framework 45

assumed to be matching or non-matching) is used. For more details on the Fellegi-
Sunter model, we refer the reader to [61].

We also note that, for models that rely on rule bases or heuristics, labels may
be directly output. However, to get good rules or heuristics, extensive domain
engineering effort is required and in recent years, such methods have been largely
superseded by machine learning. Therefore, we focus on machine learning methods
for assigning scores to pairs in the candidate set. The evolution of the ER field (not
necessarily within knowledge graphs or Semantic Web alone) is complicated; we
provided an extensive survey, and the limitations of existing work, in [86].

In machine learning-based ER, each mention pair in C is first converted to
a numeric (typically, but not necessarily, real-valued) feature vector. Figure 3.5
illustrates the procedure for two mentions, assuming that special (i.e. ‘dummy’)
values are used in the event that (1) values for a given property are missing from
both mentions, even though values for that property were observed for at least one
other mention in the dataset; (2) the value for a given property is missing from one
(but not both) mentions.

In general, given n properties, and m functions in the feature library, the feature
vector would have mn elements. We say general, because it is also possible that
some features are designed for specialized values (e.g., a feature that computes
the number of milliseconds between two date values), and not applicable to two

Fig. 3.5 An illustration of feature vector computation (between the two nodes mentioning Michael
Rogers) assuming structural homogeneity. −1 is the dummy value used in this example

46 3 Entity Resolution

arbitrary values. However, having so many features, many of them correlated and
often not useful, can be detrimental to machine learning generalization, especially
when the training set is small and highly heterogeneous, as is the case with real-
world ER tasks. There are several remedies for this; we consider two of the most
popular ones. First, one can start by computing all possible (i.e. mn) features and
then apply a feature selection method like Lasso. Second, one could spend some
amount of domain engineering effort assigning only a few (in many cases, one might
be sufficient) features to each property. Assuming that at most c feature function are
assigned to a column, with c � m, the total length of the feature vector will be
much less than mn, which would lead to presumably faster generalization and more
robust performance. Often, domain expertise can be leveraged to limit m to 1 by
deciding which feature function might be best for a given property. Considering
again the example in Fig. 3.5, we may have decided to use NYSIIS for computing
name similarity, normalized age difference for computing age similarity, TF-IDF
for computing address similarity and so on, as opposed to applying every single
function in our library for every possible property feature computation. Intuitively,
one would not want to apply NYSIIS to address similarity since it would likely
not be useful (and may even cause noise and problems with generalizing on fewer
training examples, an important concern).

What feature functions should be included in a library? There is an enormous
body of work on both string similarity, and to a lesser degree, phonetic similarity
functions, and not nearly as much research on numeric or date types. Software
packages in multiple languages exist that implement many of these similarity
functions. For the sake of completeness, we provide a list of functions that have
been popularly used in Table 3.1.

There is another problem that we alluded to at the beginning of the chapter,
namely, what should we do when there are multiple values per mention per
property? The pre-dominant way to extract features from such pairs of ‘sets’ is
to consider a two-layer similarity function, where the first layer consists of an
atomic similarity function (e.g., if the set consists of string values, this could be the
normalized similarity version of the edit distance function), and the second layer
consists of an aggregation. Aggregation functions of this kind have been explored
in detail in the clustering literature. Below, we portray such a two-layer function
using an example.

Example 3.2 (Two-layer Similarity Feature) Consider two sets of names {Jim,
Jimmy, Jeremy} and {James, Jim} between which we need to output a single simi-

Table 3.1 Illustrative instances of similarity functions typically used in ER workflows. Neither the
feature categories nor the example functions in each feature category are exhaustive

Feature category Example functions

Character Edit, Levenstein, Affine Gap, Smith Waterman, Jaro, Q-gram

Token Monge Elkan, TF-IDF (Soft, Q-gram), Jaccard

Phonetic Soundex, NYSIIS, ONCA, Metaphone, Double Metaphone

3.4 Measuring Performance 47

larity score. An atomic similarity feature could be Monge-Elkan. Namely, we could
compute Monge-Elkan scores between each pair of terms in the two sets and output
the results as a complete weighted bipartite graph. Several aggregation measures
could be considered for the second layer of the similarity feature. For example, we
could take either the minimum or maximum of all scores in the graph as the final
score. We could also take the average. A more robust mechanism that has been
found to work well in several cases is the Hungarian algorithm, which tries to match
each term in the first set with at most one term in the second set (vice versa) such
that the total sum of scores is maximized. We only keep those edges in the graph
that were included in the optimal matching output by the Hungarian algorithm. Note
that the number of edges in the graph will be the minimum of the cardinalities of
the two sets, since a term in any set can never receive more than one assignment. In
this sparser graph, containing only optimal assignments, we could take the average,
minimum or maximum (or any reasonable aggregation) of edge weights.

As the example above shows, the more complicated a similarity measure
becomes, the more degrees of freedom it tends to have, and the more options there
are to explore. The extensive literature on ER is a good place to look for defaults,
but for unusual domains, there is no substitute for careful tuning, some of which
may have to be done through a systematic process of trial and error. Lately, vector
space embeddings (covered in the next chapter) have alleviated some of the feature
engineering effort that has gone into a typical ER workflow, but there is still much
more work to do on this front.

Once a feature extraction methodology is in place, each mention pair in C

is, in turn, converted to a feature vector. A machine learning classifier is trained
on positively and negatively labeled training samples, and is thereby used to
assign scores to the vectors in the candidate set. Several classifiers have been
explored in the literature, with random forest, multilayer perceptron and Support
Vector Machine (SVM) classifiers all found to perform reasonably well. We note
that, although all of these classifiers make the i.i.d. (independent and identically
distributed) assumption, transitivity does play a strong role in real-world ER
determinations (if (e, j) and (e, k) are classified with high scores, it is reasonable to
suppose that so should (j, k)). This fact is typically employed, not at this stage, but
in the post-processing clustering and soft transitive closure stage (briefly discussed
in a subsequent section) where we take the outputs of similarity and attempt to
‘collapse’ them into clusters, with each cluster representing all mentions of a single
underlying entity.

3.4 Measuring Performance

The independence of blocking and similarity suggests that the performance of each
can be controlled for the other in experiments. In the last decade, in particular,
both blocking and similarity have become increasingly complex. It is the norm,

48 3 Entity Resolution

rather than the exception, to publish either on blocking or on similarity in an
individual publication. Despite its potential disadvantages (in practice, there are
interdependencies between blocking and similarity, since feature functions and
biases could often be traded between the two, sometimes without knowledge), this
methodology has resulted in the adoption of well-defined evaluation metrics for
both blocking and similarity. This independence assumption has been challenged in
a small number of applications in recent years; as just one example, a blocking
technique called comparisons propagation proposes using the outcomes in the
similarity step to estimate the usefulness of a block in real time [137]. The premise
is that if a block has produced too many non-duplicates, it is best to discard it rather
than finish processing it. By this logic, the cost of processing the block outweighs
the gain, at least in expectation.

While such techniques are appealing, their implementations have mostly been
limited to serial architectures, owing to the need for continuous data-sharing
between the similarity and block generating components. Experimentally, the
benefits of such techniques over independent techniques like Sorted Neighborhood
or traditional blocking (with skew-eliminating measures such as block purging) have
not been established extensively enough to warrant widespread adoption. The two-
step workflow, with both steps relatively independent, continues to be predominant
in the vast majority of ER research. With this caveat in place, we describe these
metrics below.

3.4.1 Measuring Blocking Performance

The primary goal of blocking is to scale the naïve one-step ER that pairs all
mentions (order-independently) with each other. A blocking system accomplishes
this goal by generating a smaller candidate set. If complexity reduction were the only
goal, the blocking system could simply generate the empty set and obtain optimal
performance. Such a system would be useless because it would generate a candidate
set with zero duplicates coverage.

Thus, duplicates coverage and candidate set reduction are the two goals that every
blocking system seeks to optimize. To formalize these measures, let Ω be denoted
as the exhaustive set of all |M|C2 pairs; in other words, the candidate set that would
be obtained if there were no blocking. Let ΩD denote the subset of that contains
all (and only) matching mention pairs (i.e. semantic duplicates). ΩD is designated
as the ground-truth or gold standard set. As in previous sections, let C denote the
candidate set generated by blocking. Using this notation, Reduction Ratio (RR) is
defined by the equation below:

RR = 1 − |C|
|Ω| (3.1)

3.4 Measuring Performance 49

The higher the Reduction Ratio, the higher the complexity reduction achieved by
blocking, relative to the exhaustive set. Less commonly, RR can also be evaluated
relative to the candidate set Cb of a baseline blocking method (by replacing Ω

in Eq. 3.1 with Cb). Note that, since RR has quadratic dependence, even small
differences in RR can have an enormous impact in terms of run-time. For example, if
Ω contains 100 million pairs (not an unreasonable number, since it would only take
a mentions set M with about 20,000 mentions i.e. a relatively small dataset), and
System 1 achieves an RR of 99.7%, while System 2 achieves 99.5%, their candidate
sets would differ by 200,000 pairs.

In a similar vein, coverage, or Pairs Completeness (PC), is defined below:

PC = |C ∩ ΩD|
|ΩD| (3.2)

One interpretation of PC is to consider answering the following question: if we
knew L and apply it to the candidate set C output by blocking, what would be
the recall? From this perspective, PC is nothing but a measure of recall (used for
evaluating overall duplicates coverage in the similarity step, as described in the
subsequent section) that controls for the errors in further learning or approximating
L , which is not known. In other words, Pairs Completeness gives an upper bound
on the recall metric. For example, if PC is only 80%, meaning that 20% of the
duplicate pairs did not get included in the candidate set, then coverage on the full
ER task will never exceed 80%.

There is typically a tradeoff between achieving high PC and RR. The tradeoff
is achieved by tuning a relevant parameter. There are two ways to represent this
tradeoff. The first is a single-point estimate of the F-Measure, or harmonic mean,
between a given PC and RR:

F − Measure = 2 × PC × RR

PC + RR
(3.3)

A single-point estimate is only useful when it is not feasible to run the blocking
algorithm for multiple parameter values. Otherwise, a more visual representation of
the tradeoff can be achieved by plotting a curve of PC vs. RR for different values of
the parameters.

Another tradeoff metric, Pairs Quality (PQ), is less commonly used than the F-
Measure of PC and RR:

PQ = |C ∩ ΩD|
|C| (3.4)

Superficially, PQ seems to be a better measure of the tradeoff between PC and
RR than the F-Measure estimate, which weighs RR and PC equally, despite the
quadratic dependence of the former. In this vein, PQ has been described as a
precision metric for blocking. Intuitively, a high PQ indicates that the generated
blocks (and by virtue, the candidate set) are dense in duplicate pairs.

50 3 Entity Resolution

In practice, PQ gives estimates that are difficult to interpret, and can be
misleading. For example, suppose there were 1000 duplicates in the ground-truth,
and only contained 10 pairs, of which 8 represent duplicates. PQ, in this case, would
be 80%. Assuming that the exhaustive set is large enough that RR is close to 100%,
the F-Measure (as defined above) would still be less than 2% (since PC is less than
1%). The F-Measure result would be correctly interpreted as an indication that,
for practical purposes, the blocking process has failed. The result indicated by PQ
alone is clearly misleading, suggesting that, as a tradeoff measure, PQ should not
be substituted for the F-Measure of PC and RR. An alternative, proposed by at least
one author but (to the best of our knowledge) not used widely, is to compute and
report the F-Measure of PQ and PC.

3.4.2 Measuring Similarity Performance

Given a candidate set C, the similarity step uses a learned linking function to
partition C into sets CD and CND of duplicates and non-duplicates respectively. The
two metrics predominantly used for evaluating the similarity step, and by virtue, ER
as a whole, are precision and recall:

Precision = |CD ∩ ΩD|
|CD| (3.5)

Recall = |CD ∩ ΩD|
|ΩD| (3.6)

In other words, precision is the ratio of true positives to the sum of true positives
and false positives, while recall is the ratio of true positives to all positives in the
ground-truth. Similar to PC and RR defined earlier, there is a tradeoff between
achieving high values for precision and recall. An F-Measure estimate can again
be defined for a single-point estimate, but a better, more visual, interpretation is
achieved by plotting a curve of precision vs. recall for multiple parameter values.

Note that, since similarity is defined as a binary classification problem in the
machine learning interpretation of ER, other measures such as accuracy can also
be defined. One reason why they are not considered in the ER literature is because
they also evaluate performance on the negative (i.e. non-duplicates) class, which is
not of interest in ER. An alternative to a precision-recall curve is Receiver Operating
Characteristic (ROC), which plots true positives against false positives. Historically,
and currently, precision-recall curves dominate ROC curves in the ER community,
but nowadays, important machine learning packages (e.g., sklearn in Python) allow
a user to print out various metrics and curves without any programming. In real life,
we recommend printing out both the precision-recall and ROC curves to evaluate
both (1) how well the ER system is doing in an ‘absolute’ sense; (2) how well the
ER system is doing above random.

3.6 Related Work: A Brief Review 51

3.5 Extending the Two-Step Workflow: A Brief Note

Although the vast majority of ER (including research and implementation) is
concerned with optimizing and automating one or both of the two steps in the
standard blocking-similarity workflow, the heterogeneity of knowledge graphs can
require two additional steps to be given some thought in some application domains.
Earlier in the chapter, we discussed how heterogeneous schemas (by way of type
and property heterogeneity) can cause problems for ER systems. If we are linking
mentions between two independent knowledge graphs with different schemas, or
even between mentions in a single knowledge graph with very fine-grained types
and properties, it is important to develop a robust type and property matching system
that can be executed prior to blocking to reconcile schema heterogeneity. Just like
blocking, we generally desire such preprocessing steps to be recall-friendly, since
we do not want to risk losing (already sparse) duplicates before the similarity step,
which is expected to add noise of its own.

It turns out that there is a large body of work on both type and property
matching, sometimes involving the same researchers as ER, and generally falling
under the umbrella term of schema matching or ontology alignment. In practice,
simple solutions to ontology alignment get us most of the way in real-world domain-
specific KGC pipeline, though advanced solutions are mandated if the accuracy
requirements are higher than normal or if the domain is particularty difficult. More
recently, there has also been some work on schema-free approaches that do not
require an alignment between heterogeneous ontologies before executing an ER
workflow. The efficacy of these approaches is not fully understood, however, since
only a handful of papers have explored its applications.

Additionally, post-processing steps like clustering may also be required after
the similarity step has finished executing. We mentioned clustering and transitive
closure earlier, and these continue to be the most important post-processing steps.

3.6 Related Work: A Brief Review

Entity Resolution has been a research area for almost fifty years, even though the
problem has picked up a large amount of steam only in the last couple of decades
owing to the growth of the Web. Recall that we had listed four important challenges
when we had first described the problem (i.e. automation, heterogeneity, scalability
and domain adaptation). Concerning the last challenge (domain adaptation), we note
that most ER solutions in research tend to be domain agnostic, although a few are
specifically geared for customer (both people and business) names. Many of the best
domain-specific ER systems (such as for product names, or for publications) tend
to have been developed in industry, and likely required a lot of proprietary training,
tuning and model engineering. Scalability efforts have tended to attract the attention
of the database community (by way of devising the problem as optimizing ‘soft

52 3 Entity Resolution

joins’) and to a lesser extent, parallel and distributed systems. There is a tradeoff,
however, between automation and scalability, as we later discuss.

Our main focus in the discussion herein will be on automated solutions, with
some focus on heterogeneity. The reason is that automation continues to be the most
important issue, both in the broader AI community, but especially in problems like
ER where intensive effort is usually required to achieve good quality.

3.6.1 Automated ER Solutions

Since the early 2000s, machine learning has been actively applied to ER [57].
A machine learning-based ER system could adaptively learn good blocking and
similarity functions from both the labeled training data (for supervised approaches),
and the unlabeled data (for unsupervised, semi-supervised and clustering-based
approaches). On the other hand, systems that use a fixed set of heuristics on all data
sources are non-adaptive, and by any pragmatic definition, the issue of automation
trivially does not arise.

One of the earliest examples of an adaptive ER system, proposed by Winkler
[183], uses a variant of the Expectation Maximization (EM) algorithm [53]. The
Fellegi-Sunter model of record linkage is assumed [61]. In this model, candidate
entity pairs are partitioned into three classes (matches, non-matches and possible
matches) using two decision thresholds. The class of possible matches includes
entity pairs that are too ambiguous for the similarity function to resolve into a match
or non-match class. Such pairs require clerical review. A Bayesian argument shows
that using two decision thresholds is optimal in the sense of minimizing possible
matches for preset Type I and II error rates [61].

Unfortunately, Winkler [184] stipulated that the EM algorithm can only be
successfully applied to ER if at least five empirical conditions are met. Elmagarmid
et al. [57] succinctly list these conditions, some of which are problematic for Linked
Data. One such assumption is conditional independence of features. Another is that
the match class is well-separated from the non-match class. In systems were EM
was considered as a baseline, the empirical performance was found to be less than
ideal when some of the stated assumptions are violated [89].

Ravikumar and Cohen [150] use similar, but more robust, ideas by proposing
hierarchical graphical models as a way of modeling the similarity of features
through latent variables. The system is unsupervised, but assumes structural homo-
geneity and a serial architecture. A distance function1 is also assumed to be
provided. Empirically, the scope of the work was limited to Relational Database
deduplication applications.

On a similar note, Bhattacharya and Getoor [20] use Latent Dirichlet Allocation
(LDA) for modeling latent commonalities between entities [29]. The main appli-

1In the paper, Soft-TF-IDF was proposed as an excellent distance function [150].

3.6 Related Work: A Brief Review 53

cation of their work is in collective classification [21]. A classic example arises
in the co-authorship domain. Given a set of bibliographic works, two authors (on
two independent works) are likely to be the same individual if they have similar
co-authors. By modeling such relational information through latent variables, pairs
of individuals can be collectively disambiguated. While promising, the work has
not been shown to be applicable to domains where relational issues don’t arise.
Similar to the work by Ravikumar and Cohen [150], structural homogeneity and
serial execution were both assumed in the original paper [20].

Christen [39] adopts a different approach. First, a strong weight-based heuristic is
used to sample training examples that are almost certainly matches or non-matches.
Intuitively, the feature weights in such examples are nearly all 1.0 for matches (or
0.0 for non-matches). The method is predicated on locating such extreme-weighted
samples to bootstrap the training process. A classifier (SVM) is trained on the
samples and used to label other feature vectors in the candidate set. The method,
along with other viable classifiers, a synthetic data generator and a user interface, is
available in the FEBRL toolkit [40]. FEBRL was originally designed for biomedical
record linkage (a much more constrained form of ER, pertaining primarily to the
database community), but can be applied to other domains. Heterogeneity is a
major issue, since FEBRL is designed for structurally homogeneous applications.
Empirically, only small benchmarks were used for evaluations.

Systems based on active learning have also been proposed, two good examples
being RAVEN and COALA [125, 128]. Such systems do not require as many
training examples as fully supervised systems such as MARLIN [23], and deliver
competitive performance. A major disadvantage is scalability, owing to the method
being iterative and requiring continuous user participation. On a positive front,
heterogeneity is less of an issue as these systems were designed for Linked
Data applications. In particular, RAVEN accommodates structural heterogeneity
by modeling type and property alignments as an application of the stable marriage
problem [72].

Genetic algorithms have also been extensively explored [126], both in supervised
and unsupervised versions. The unsupervised version relies on a measure known
as a pseudo F-Measure (PFM). PFMs are heuristics that aim to approximate the
actual F-Measure by analyzing the data, and are used as fitness functions in the
genetic algorithms. A PFM can also be used to guide the unsupervised learning of
a link specification function, as in the deterministic EUCLID algorithm, which uses
linear and Boolean classifiers [127]. Although promising, evaluations have shown
that the correlation between various proposed PFMs and the actual F-Measure
is tenuous [127]. With genetic approaches, the entire dataset has to be scanned
over multiple iterations, and results are non-deterministic. In the original papers,
EUCLID and the genetic algorithms also did not include solutions for type and
property alignments, and were evaluated on small benchmarks [126, 127]. Taken
together, these observations indicate that these algorithms may not be suitable for
large-scale Linked Data applications.

A promising solution that requires training data, but that can then be applied to
other datasets with minimal supervision through transfer learning was proposed by

54 3 Entity Resolution

Rong et al. [159]. This solution is also one of the few to favor both automation and
heterogeneity, the latter by virtue of employing schema-free features. An example
of a schema-free technique that was earlier introduced in Chap. 2 was Canopies
[112]. Such techniques address heterogeneity in a brute-force fashion, by ignoring
all structural information. In the case of [159], features are extracted by jointly
considering the information set of all properties (of a candidate instance pair). For
example, a numeric parser is used to extract numeric information (e.g. dates) present
in the properties. A problem with using such features is that noise can be introduced
by extracting irrelevant information. Also, Rong et al. [159] do not directly address
type heterogeneity. Finally, while transfer learning has some advantages, it also
degrades occasional performance. Determining when to use transfer learning is an
ongoing area of research [136].

3.6.1.1 The Automation-Scalability Tradeoff

There is a queer tension between automation and scalability. Extremely scalable
ER systems, such as Dedoop, require user involvement in terms of specifying the
workflow, as described below. Broadly speaking, it has been found that scalable
systems tend to make strong assumptions. Locality Sensitive Hashing techniques,
for example, assume that appropriate hashing families exist for the distance
functions being approximated [52]. In literature covering both ER and ontology or
schema matching, the only functions for which LSH has been appropriately utilized
are Jaccard and a version of the cosine distance function [56]. An extension to LSH
techniques to accommodate the properties of machine learning classifiers is by no
means straightforward. Another example of an architecture amenable to parallel and
distributed algorithms, Swoosh, also imposes strong assumptions on the similarity
function [15].

It is also interesting to note that ER systems implemented in a shared-nothing
paradigm, such as MapReduce, tend to leave the burden of specification on the user.
We mentioned Dedoop earlier as an example that requires the user to completely
specify the workflow [94]. The same is true for LIMES and SILK [124, 172], which
are not implemented in MapReduce, but require the user to specify the appropriate
functions and parameters. Smart joins and soft joins, which have witnessed much
research in the database community, are not adaptive and generalizable in the way
proper ER systems are.

A promising approach that is potentially amenable to a fixed number of approxi-
mately linear-time MapReduce jobs is the SVM-based proposal by Christen [39]. In
its present form, the proposal accommodates neither scalability nor heterogeneity.
The latter problem can be dealt with, as described in the following section. It is less
obvious how the system can automatically and scalably locate good seed examples
to bootstrap the training process. Christen makes the assumption that seeds can be
unambiguously located by seeking feature vectors with weights that are nearly all 0
or 1. With noisy data, this is almost never guaranteed. In empirical findings, feature
vectors are often found to be sparse, even for duplicates. If a potential method can

3.6 Related Work: A Brief Review 55

locate seeds from such data using a fixed number of MapReduce jobs automation
and scalability requirements can be reconciled. Once located, seeds can be used, in
principle, for training not just a machine learning similarity classifier, but also for
learning DNF blocking schemes and determining property alignments.

It is also possible to survey this issue from the opposite end of the spectrum.
Automated systems, which mainly tend to be EM-based algorithms that iteratively
refine a likelihood function by learning good parameters for latent variables, require
multiple scans over the dataset, copious amounts of data sharing and an unspecified
number of iterations before convergence [20, 150]. In general, they are non-
deterministic and may require multiple re-starts to avoid the pitfalls of local optima.
As Winkler (1993) observed [183], various empirical conditions have to hold for
such algorithms to be viable. Recent progress on this last issue has been promising,
but is, by no means, a settled matter [159].

Generalizing even further, the problem arises because automated systems yield
a similarity function that may be ‘opaque’ in that it is a black-box function that
cannot be further analyzed or optimized. In such cases, the only option is to rely
on a good blocking function, which may itself require manual intervention. We
subsequently describe some efforts in the direction of discovering good blocking
functions without manual supervision. There has been some work on this, but by
and large, there is no workflow that is both unsupervised and that is ultra-scalable.

3.6.2 Structural Heterogeneity

A traditional assumption in the ER community is that datasets have been homog-
enized prior to executing an ER workflow [96]. In the tabular community, schema
matching is assumed to have been performed a priori [41, 57]. In the Semantic Web
community, ontology matching is assumed to have been performed a priori [63].

These assumptions would not be problematic if the schema and ontology
matching problems were solved. In fact, research on them has been ongoing for
many decades [60, 147]. In some cases, schema matching systems like Dumas
assume that ER has been solved a priori2 [24]. The argument is that, despite the
progress in both ER and schema matching, it is misleading to assume that either
problem has been solved perfectly.

The question is largely empirical. Is it sufficient to use classic, relatively simple,
approaches to address type and property heterogeneity in the broader context of ER?
Empirical results have shown that while type heterogeneity is amenable to classic
approaches [88], property heterogeneity is not [89]. Insofar as the related work is
concerned, only the RAVEN system properly3 deals with heterogeneity, although
empirical evaluations on this issue are limited [125]. Other systems, like the one

2Dumas relies on duplicates to match columns.
3That is, RAVEN addresses heterogeneity through alignments, as opposed to ignoring structure.

56 3 Entity Resolution

by Rong et al. [159], address heterogeneity by using schema-free features that
ignore structural properties altogether. There is an empirical argument against such
approaches, for well-structured RDF graphs, since one would be losing valuable
structural information by adopting a purely schema-free approach in devising
features (while simplistic, an analogy would be the process of ‘getting rid’ of
columns in a table by concatenating all columns into one column, which would
make the schema matching process trivial, since one would be matching records
between tables with only one column each).

Note that the barrier to adopting a heterogeneous solution is conceptually simple
to overcome, by pre-pending alignment modules to the basic two-step workflow
illustrated earlier. Recent progress on this issue has been promising, especially in
the context of blocking [137].

3.6.3 Blocking Without Supervision: Where Do We Stand?

We mentioned earlier that there has traditionally been a strong focus (in the ER
research community) on the similarity step. An unfortunate consequence of the
complexity of recent ER research is that researchers often ignore other aspects, such
as blocking, in their exclusive focus on similarity or scalability. For example, both
[150] and [20] use simple ad-hoc blocking keys in their experiments.4 Scalable
systems make more extreme assumptions. For example, Dedoop require both
blocking and similarity steps to be precisely specified by a user as part of an ER
workflow [94].

For the same reason that ignoring the effects of schema or ontology matching
prior to ER is dangerous, the effects of blocking on the overall workflow should not
be neglected. Before a contribution in 2013 [87], DNF blocking scheme learners
were, at best, semi-supervised [33]. Evaluations conducted in prior work by the
author show that clustering techniques such as Canopies do not work well on a
variety of datasets [112]. In the Semantic Web, the only unsupervised blocking
scheme learner, proposed by Song and Heflin in 2011 [166], was evaluated on small
datasets and is not as expressive as general-purpose DNF blocking schemes. Thus,
in real-world ER, unsupervised blocking cannot be assumed away, since it is not
completely solved yet. Whether the community addresses this issue in sufficient
detail, as opposed to a continuing skewed focus on the similarity step, will become
clearer in the decade to come.

4For example, all records sharing a 4-gram character sequence were placed in the same block
[150].

3.7 Summary 57

3.7 Summary

Entity Resolution is an important second step in a knowledge graph construction
workflow following information extraction. The problem continues to be a difficult
one, and has taken on renewed importance with the advent of knowledge graph
ecosystems. Although the research has witnessed much progress, some issues are
still outstanding. Particularly glaring is the lack of an adaptive, unsupervised ER
system that learns from prior results, is amenable to domain adaptation and transfer
and is scalable enough to deal with Web-scale graphs. Also lacking is a systems-
level view of the problem, although in recent years, research has been catching up
to industry in building end-to-end ER infrastructures for specific problem domains
(such as products and geopolitical events).

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 What Is a Knowledge Graph?
	1.1 Introduction
	1.2 Example 1: Academic Domain
	1.3 Example 2: Products and Companies
	1.4 Example 3: Geopolitical Events
	1.5 Conclusion

	2 Information Extraction
	2.1 Introduction
	2.2 Challenges of IE
	2.3 Scope of IE Tasks
	2.3.1 Named Entity Recognition
	2.3.1.1 Supervised Methods
	2.3.1.2 Semi-supervised Methods
	2.3.1.3 Unsupervised Methods
	2.3.1.4 Features

	2.3.2 Relation Extraction
	2.3.3 Event Extraction
	2.3.4 Web IE

	2.4 Evaluating IE Performance
	2.5 Summary

	3 Entity Resolution
	3.1 Introduction
	3.2 Challenges and Requirements
	3.3 Two-Step Framework
	3.3.1 Blocking
	3.3.1.1 Traditional Blocking
	3.3.1.2 Sorted Neighborhood
	3.3.1.3 Canopies
	3.3.1.4 Research Frontier: Learning Blocking Keys

	3.3.2 Similarity

	3.4 Measuring Performance
	3.4.1 Measuring Blocking Performance
	3.4.2 Measuring Similarity Performance

	3.5 Extending the Two-Step Workflow: A Brief Note
	3.6 Related Work: A Brief Review
	3.6.1 Automated ER Solutions
	3.6.1.1 The Automation-Scalability Tradeoff

	3.6.2 Structural Heterogeneity
	3.6.3 Blocking Without Supervision: Where Do We Stand?

	3.7 Summary

	4 Advanced Topic: Knowledge Graph Completion
	4.1 Introduction
	4.2 Knowledge Graph Embeddings
	4.2.1 TransE
	4.2.2 TransE Extensions and Alternatives
	4.2.3 Limitations and Alternatives
	4.2.4 Research Frontiers and Recent Work
	4.2.4.1 Ontological Information
	4.2.4.2 Text
	4.2.4.3 Other Extrinsic Information Sets

	4.2.5 Applications of KGEs

	4.3 Summary

	5 Ecosystems
	5.1 Introduction
	5.2 Web of Linked Data
	5.2.1 Linked Data Principles
	5.2.2 Technology Stack
	5.2.3 Linking Open Data
	5.2.4 Example: DBpedia

	5.3 Google Knowledge Vault
	5.4 Schema.org
	5.5 Where is the Future Going?

	Glossary
	References
	Index

