Chapter 4 ®
Advanced Topic: Knowledge Graph Qe
Completion

4.1 Introduction

Information extraction and entity resolution are clearly both important steps in
domain-specific knowledge construction [66, 111]. However, even when done with
high accuracy, they are rarely enough. Knowledge graphs constructed over raw
data very often have missing and noisy information, including incorrect triples
and missing relations. Put simply, such knowledge graphs have to be refined or
‘completed’ before they can be deployed in a good application [139, 145]. An
example is illustrated in Fig.4.1. The knowledge graph fragment in the figure
describes political figures and their affiliations, and is possibly extracted from
news articles. We assume for the moment that the entities and relations have been
correctly extracted and reconciled (i.e. the techniques in Chaps.?2 and 3 achieved
excellent performance). Given this KG, if we were to execute a query asking who
the first lady was under President Barack Obama’s presidency, we would not get
any answer. On the other hand, we would get a response from the system if we
replaced President Barack Obama in the query with President George Bush. This is
because the fact that Laura Bush was the first lady in the Bush administration has
been explicitly extracted from a source, perhaps because it was mentioned, while the
same is not true for First Lady Michelle Obama. In general, it is not reasonable to
assume that every possible fact or inference is ever going to be explicitly extracted
from a raw input data source. Sometimes (as in the case above), this is because the
‘missing’ fact is not mentioned in the source explicitly, but many times, it is also
because of noise in the extraction system. Similar reasoning can be applied to the
presence of ‘wrong’ links.

In its broadest form, knowledge graph completion would take a graph with
missing and wrong edges and nodes, and attempt to both correct and complete the
graph. In other words, knowledge graph correction is included within knowledge
graph completion. In the case of Fig.4.1, a ‘good’ system would be able to take
the graph and infer the fact that Michelle Obama was first lady in the Obama
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Fig. 4.1 A simplified illustration of the knowledge graph completion problem

administration. A ‘bad’ system would add noisy links, or remove correct links by
incorrectly labeling them as noisy. Usually, the picture is much more nuanced and
the evaluation of a knowledge graph completion system involves assessing whether,
despite the potential introduction of some noise, the system ended up providing an
overall benefit to knowledge graph quality.

Why is there reason to believe that knowledge graph completion works? One
can intuitively see that the global graph exhibits some ‘semantic regularities’ that
could be exploited. For example, if we had observed ten presidents in the KG, and
found that 90% of their spouses were also explicitly designated first ladies in the
KG, it is reasonable to believe that the other 10% are also first ladies, despite no
explicit evidence. One can also see why this kind of inference can be a problem.
The question of when and where knowledge graph completion is useful, and when
it should be avoided has not been fully addressed by the research community. One
disadvantage of completion, and of any method that relies solely on inference, is
that state-of-the-art neural methods typically no provenance or ‘explanation’ of why
some link was predicted between two nodes, or why some link was declared as
noisy.

With these caveats in mind, we argue that knowledge graph completion is still a
very useful, and actively researched, area within the broader community of knowl-
edge graph construction. Multiple classes of methods have been proposed for the
problem over the years. Before the modern renaissance of deep learning and neural
networks, probabilistic graphical models constituted the primary line of attach for
such ‘relational’ problems. Markov logic networks were particularly popular in the
mid 2000s, but for various reasons, including scalability, were supplanted by models
like probabilistic soft logic that offered a good tradeoff between expressibility,
optimization and representation. Probabilistic soft logic and its variants have
continued to be popular for various tasks, but the dominant line of research in the
knowledge graph completion community (at the time of writing), and the one that
we subsequently describe, is knowledge graph embeddings (KGEs) [176].
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4.2 Knowledge Graph Embeddings

Knowledge Graph Embeddings (KGEs) are an applied offshoot of a broader
emergent research area called representation learning [14]. In the 2000s, as machine
learning systems continued to proliferate, it was realized (somewhat disquietingly)
that the performance of a machine learning system was usually dependent very
heavily on the features engineered over the datasets, as opposed to the virtues of the
machine learning algorithms themselves. Feature engineering tended to be manual
and ad-hoc, and in the general case, there was no good reason to suppose why
one feature would perform better than another. Researchers also realized that the
‘goodness’ of a feature set also had a lot to do with the dataset itself i.e. it was
quite possible for a particular set of features to perform well on one dataset but
not another, all else being the same. Clearly, a less manually intensive, data-driven
approach to learning good representations for data (whether it was natural language
data like words and sentences, or image data) was motivated.

In the natural language community, representation learning algorithms like
word2vec have become fairly standard and are widely used across the board for
a range of tasks [118], especially information extraction (relation extraction, event
extraction and named entity recognition). The key idea is to slide a window over text
and to embed each word into a dense, real-valued vector space (typically between
50-200 dimensions) that is low-dimensional compared to alternatives like tf-idf,
which require dimensionality in the range of 50,000—1 million, depending on the
size of the language’s vocabulary. The optimization function used for the embedding
takes into account the other words in the window, called a context. Intuitively, words
that have similar context would be embedded close together in the vector space. In
natural language, this generally leads to common-concept instances (such as cat
and dog) being embedded close together due to their similar context. This kind of
embedding is reminiscent of topic models like Latent Dirichlet Allocation (LDA)
[29], but LDA was a graphical (not neural) model designed to embed documents. In
contrast, algorithms like word2vec are designed to embed words, based on context,
rather than coarser-grained documents, although variants of word2vec can also be
used to embed sentences, paragraphs and documents [51].

Because of their semantic dependence on context, rather than ontology, embed-
dings based on statistical models have been found to capture some remarkable
analogical patterns in a completely unsupervised fashion (Fig.4.2). Despite not
being given ontological information, the embedding is able to deduce that words
like ‘generator’ and ‘battery’ should be clustered closer together in a semantic space,
rather than (say) ‘teaching’ and ‘generator’. In the embedding space, one can also
carry out vector operations like King — Man + Woman with the resulting vector
being very close to Queen in the semantic space.

Primarily because of these semantic properties, and also (on a related note)
because of superior performance on downstream natural language processing
tasks like information extraction, the word2vec algorithm became so popular that
numerous variants have emerged, and the algorithm has even been adopted to embed
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Fig. 4.2 An illustration of word embeddings using algorithms like word2vec. Words that occur in
similar contexts (e.g., elections, campaigning) are clustered closer together in the vector space.
2D visualizations like these (from higher-dimensional vectors) can be rendered using neural
dimensionality reduction algorithms like t-SNE [108]. Note that dimensions do not have any
intrinsic meaning

nodes in networks and graphs (see e.g., the DeepWalk algorithm [141]). However,
its application or adoption to knowledge graphs is not clear, and has not been
usefully demonstrated. In part, the reason is that knowledge graphs are a richer,
more structured data set, since even the simplest definition of a KG assumes that is
a multi-relational, directed, labeled graph where entities are nodes and relations are
different types of edges. Motived by this additional structure, novel approaches were
proposed in the early 2010s to embed nodes (and often, but not always, relations)
in the KG into a continuous vector space while preserving certain key structural
properties.

In the rest of this section, it will be useful to think of a KG as a set of triples,
where each triple is of the form (%, 7, ¢), where h and ¢ are referred to as head and tail
entities respectively, and r is the relation. We do not assume constraints, although
models like RDF impose many requirements on how relations and head/tail entities
are actually represented. For example, the RDF model does not allow head entities
to be modeled as ‘literals’ like strings or numbers. One reason for ignoring such
constraints in the present discussion is that typical (and early) papers on knowledge
graph embeddings have mostly arisen in the NLP and general Al communities,
rather than the Semantic Web community, which is the major adopter of RDF.
Although some recent work has attempted to embed knowledge graphs modeled
specifically as RDF, even these models tend to be heavily inspired by the earlier
models that were proposed in ‘ontologically light’ communities.

Furthermore, although many embedding models exist at the time of writing,
almost all models represent /& and ¢ as points in the vector space, while relation r
usually has a more flexible representation, since it is modeled as an operation. Thus,
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it could be a vector, representing operations such as translation or projection, but in
some cases, it can also be a matrix. In contrast, representing an entity as a matrix is
far less common. The representations themselves are learned by minimizing a global
loss function involving all entities and relations. As a result, even the embedding
representation of a single entity or relation encodes global information from the
entire knowledge graph. Subsequently, we describe some of the more established
methods for achieving this kind of encoding.

4.2.1 TransE

TransE was one of the first KGE techniques proposed (shortly after the Structured
Embedding method [31]) [30], and has largely survived the test of time. It continues
to be widely used, and delivers extremely competitive performance. A range of
alternatives (commonly referred to as Trans*) have been built using the same fun-
damental principles as TransE, but with richer optimizations and information sets.
We present the TransE system in detail, and then briefly cover some alternatives.

First, TransE is an energy-based model for learning low-dimensional embed-
dings of entities; specifically, relationships are represented as translations in the
embedding space: if (h, r, ) holds, then the embedding of the tail entity # should
be close to the embedding of the head entity / plus some vector that depends on
the relationship r. Put more mathematically, the algorithm attempts to generate an
embedding for each h, r and ¢ such that for triples observed in the knowledge
graph, the translation relationship h + r =~ t should hold. Given enough triples,
the hope is that the embedding is general enough to yield new information i.e. in the
test phase, if we observe a relationship h’ + r’ ~ t’ that was not observed during
training, there is a non-trivial probability that (i, r/, t') is a true triple (constituting
missing information in the original KG) and can be added to the KG to complete it.
A key strength of TransE is its reliance on a reduced set of parameters since it learns
only one low-dimensional vector for each entity and each relationship. The energy-
based optimization function (based on translation) is also simple and intuitive to
understand.

Why would translation be expected to be so successful? One motivation is that
hierarchical relationships are extremely common in KBs and translations are the
natural transformations for representing them. For example, a natural representation
of trees is to have the siblings be close to each other; in other words, with nodes at
a given height organized on the x-axis, the parent-child relationship corresponds to
a translation on the y-axis. Since a null translation vector corresponds to an equiva-
lence relationship between entities, the model can then represent the sibling relation-
ship as well. A secondary motivation arose from coincidental findings from the word
embedding literature, where some authors found that many relations (e.g., capital-
of, has-father) are represented by the model as translations in the embedding space.
This suggested the existence of embedding spaces in which 1-to-1 relationships
between entities of different types may potentially be represented by translations.
The intent of TransE was to enforce such a structure of the embedding space.
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4.2.2 TransE Extensions and Alternatives

The basic TransE model has been extended in numerous ways into a family
of Trans* algorithms such as TransH, TransR, and TransD, to name a few
[106, 176, 179]. The primary difference lies in the underlying assumptions about
the embedding space,, which impacts the optimization function used during both
training and testing. For example, to overcome limitations of TransE in dealing with
1-to-N, N-to-1, and N-to-N relations, an effective strategy is to allow an entity to
have distinct representations when involved in distinct relations. To take an example,
one could imagine learning a different embedding for the city ‘Tokyo’ in the context
of a relation such as ‘capital of” than in the context of the relation ‘has population’.
Intuitively, the first embedding would put (the entity vector representation of) Tokyo
closer to other capital cities, while the second embedding may place it closer to
cities with similar populations. in theory, this kind of embedding permits richer
information sets to be captured, but at the cost of using more training data and
observing more triples.

TransH follows this general idea [179], by introducing relation-specific hyper-
planes. Similar to TransE, TransH models entities and relations as vectors, but
the relation vector r is considered to be specific to a hyperplane (defined by its
normal vector w,). In other words, a relation is actually captured by two pieces
of information (a vector, and a hyperplane normal). Given a triple (h,r,t), the
entity representations of & and t are first projected onto the hyperplane, followed
by the translation operation. The projections are assumed to be connected by r on
the hyperplane with low error if (h, r, t) holds, with the scoring function being
similar to that used by TransE. It is both possible and expected that, for some
hyperplanes, the triple will have low error, while on other hyperplanes it won’t,
since & and ¢ will not be connected through the relation underlying that hyperplane.
Mathematically, the optimization is richer since it has to perform the dual task of
hyperplane-specific translation (low error for true triples and high error for false
triples), and discovering hyperplanes that are expressive and separable enough to
accomplish such discrimination. As a consequence, TransH is slower than TransE,
and (all else being equal) does not generalize as well to smaller or sparser graphs
than TransE.

TransR is a similar variant [106], the difference being that it introduces relation-
specific spaces, rather than (the more constrained) hyperplanes. In TransR, entities
are represented as vectors in an entity space %, and each relation is modeled as a
translation vector in k-dimensional space 2 that doesn’t necessarily have to be a
hyperplane. More details on these operations are provided in the original paper.
Herein, we note that, although powerful in modeling complex relations, TransR
introduces a projection matrix for each relation, hence requiring O (dk) parameters
per relation. It ends up losing both the simplicity and efficiency of TransE and
TransH, both of which require only O(d) parameters per relation, d being the
embedding dimensionality. More complicated versions of the same approach were
also later proposed. We do not cover these here, but provide a list of some models
(and their embedding spaces) published at the time of writing, in Fig. 4.3.
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Method Ent. embedding Rel. embedding
TransE h,t € R? r € R4
TransH h,t € RY r,w, € R¢
TransR h.tc R? r € R¥, M, € Rk>d
TransD h,w;, € R? r,w, € R¥

t.w; € Rd
TranSparse h,t € R? r € R¥ M, (6,) € R¥*?
M (6}), M2(@2) € R
TransM h,t € R4 r € R?
ManifoldE h,t € R4 r € R4
TransF h,t € R? r € R4
TransA h,t € R¢ rc R M, € R4
KG2E h~N(up,2n)
t~ N(my, 2t) r~N(u,,2)
Whs Iy ERH’ W, € R“'.E,. c Rdxd
Eh : Ef = Rdxd
TransG h ~ N(uy,03]) i~ Mupy — pp, (07, + 07)I)
t ~ N (g, 020) r=Y,;nut e R?
.y € R?
UM h,t € R4 —
SE h,t € R? M! M? € R%d

Fig. 4.3 Embedding spaces of TransE and its alternatives. .4 is the normal distribution with the
usual mean p and standard deviation o parameters. d is the embedding dimensionality (set by
the user, and generally in the range of tens to hundreds), n and m are the numbers of entities and
relations respectively in the KG to be embedded. Other symbols are algorithm- or system-specific,
although some (such as k) can be specified by the user. For example, in TranSparse 6 is the average
sparseness degree of projection matrices. For more formal definitions of parameters, we refer the
reader to the individual papers or to a recent condensed survey
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&ethod Space complexity Time complexity\
TransE O(nd + md) O(d)
TransH O(nd 4+ md) O(d)
TransR O(nd + mdk) O(dk)
TransD O(nd + mk) O(max(d, k))
TranSparse O(nd + (1 — 8)mdk) O(dk)
TransM O(nd + md) O(d)
ManifoldE O(nd + md) O(d)
TransF O(nd + md) O(d)
TransA O(nd + md?) o(d)
KG2E O(nd + md) O(d)
TransG O(nd + mdc) O(dce)
UM O(nd) O(d)

\SE O(nd + md?) o(d?) )

Fig. 4.4 Time and space complexity of selected KGE models. For details on notation, see caption
of Fig. 4.3

4.2.3 Limitations and Alternatives

Recently, it was shown that KGEs can suffer from problems of generalization,
reflected in poor performance, when the KG is either too sparse or noisy (or both)
[144]. In such situations, alternate, more established methods such as Probabilistic
Soft Logic (PSL) were found to work better [92]. Another issue is the time taken
to train an embedding, and the tuning of hyperparameters. While an efficient
implementation of TransE (and some of its extensions) exists at the time of writing,
the original implementation was time consuming requiring on the order of hours to
train medium-sized knowledge graphs. This makes trial-and-error-style training and
tuning, problematic. Over time, the models have become steadily more complicated,
in fact (Fig. 4.4).

4.2.4 Research Frontiers and Recent Work

Many of the models that have been proposed for knowledge graph embeddings
are based on using assertions in a given KG as observations in the training data.
However, this imposes a degree of locality on the embedding model, since there
are other potential information sets that can be considered in the embedding
optimization. Some possibilities (as alternate information sets) that have been
recently proposed in addition to, or even instead of, assertions in the KG are
covered below. These information sets can be used to augment and improve KGE
training [176].
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4.2.4.1 Ontological Information

Knowledge graphs do not just contain entities, since (as we described in detail in
both Chaps. 1 and 2) many of the nodes are fyped according to some ontology,
whether implicit, explicit or shallow. Some ontologies, such as YAGO [167], can
be extremely detailed containing full hierarchies of classes and sub-classes. For
example, Sharon Stone is a person, but also an actor. Thus, all else the same, we
would give higher weight to a triple that declares Sharon Stone to have starred in
a movie, than if we had not known that Sharon Stone is an actress. Many similar
examples can be formulated along these lines.

Modeling this intuition in a computational way is less straightforward. A possible
avenue is to not treat the ‘is-a’ relation as special (recall that is-a was one of the
few, and often the only, relations that serves as a ‘glue’ between the KG and the
ontology) but to declare all is-a triples, and possibly other ontological triples, in
the same vein as other KG triples e.g., < SharonStone,is — a, Actor >, <
SharonStone, is—a, Person >.In this formulation, we are essentially augmenting
the original training set (the assertions in the KG) with additional triples (the
ontology, and the glue between KG and ontology). The effectiveness of this strategy
is not completely clear at the time of writing, especially with respect to the relative
sizes of ontologies and KGs. An advantage of the method is that it is simple. A
disadvantage is that it may be simplistic e.g., is Sharon Stone is an actress, an actress
is an entertainer, and an entertainer is a person, the embedding is not really capturing
the fact that Sharon Stone is a person. Intuitively, the special semantics of is-a (and
other) relations is not being taken into account by the embedding.

This has motivated more complex approaches that take into account the special
nature of is-a triples. For example, as proposed in [70] using a method called
semantically smooth embedding (SSE), one could explicitly design the optimization
to require entities of the same type to stay close to each other in the embedding space
e.g., Sharon Stone would be closer to Sylvester Stallone than to Roger Penrose, since
Stallone is also an actor, while Penrose is a scientist. Technically, SSE employs
two manifold learning algorithms, i.e., Laplacian eigenmaps and locally linear
embedding to model such a ‘smoothness assumption’. More specific details can
be found in the original paper [70].

A second approach, proposed in [186], is type-embodied knowledge representa-
tion learning (TKRL), which can handle hierarchical entity categories and multiple
category labels. TKRL is a translational distance model with type-specific entity
projections. Given an assertion (h, r,t), TKRL first projects h and t with type-
specific projection matrices, and then models r as a translation between the two
projected entities. Because of the matrices, TKRL can have a high space complexity,
and would likely not generalize well unless it had access to enough data. When it
does, however, it has been found to have better performance in tasks and applications
such as link prediction and triples classification. Whether this tradeoff makes
sense for an application designer depends on the application and the size (and
trustworthiness) of the KG to be embedded.
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Currently, there continues to be ongoing interest in utilizing ontological infor-
mation sets in knowledge graph embeddings, whether directly or indirectly. Most
likely, there is still much work to be done in this area. What is clear, however, is
that this information should not be ignored by the embedding model and can serve
a useful purpose, whether in terms of boosting performance or (more abstractly)
modeling human intuition more closely.

4.24.2 Text

Researchers have also explored incorporating textual descriptions of entities into
the KGE model. This is motivated by the observation that, in many KGs, concise
descriptions for entities are available, containing important semantic information
about the entities. Even when this is not the case, one can always find and crawl
sources such as news releases and Wikipedia articles to enrich entities with context.

Embedding KGs with text information dates back to the NTN model [165], which
was proposed fairly early on. In NTN, text information is used in a fairly naive way
since it is simply used to initialize entity embeddings. Namely, NTN first learns
word vectors from a news corpus, and then initializes the representation of each
entity by averaging the vectors of words contained in the entity’s label. By way of
example, the representation for ‘Sharon Stone’ would be initialized by averaging
the word vectors for ‘Sharon’ and ‘Stone’. This example also shows why the utility
of text information is naive in this model, since Sharon and Stone individually show
up in other contexts as well. This is also true for locations (‘New York’ vs. ‘New
Orleans’, or ‘Los Angeles’ vs. ‘Los Alomos’), and for other entity types as well.
Later, another similar method was proposed, in which entities were represented
as average word vectors of their descriptions rather than just their names. More
generally, these kinds of methods are problematic because they do not take into
account joint contexts of assertions and text but instead model textual information
distinctly from assertions, and in the process, fail to leverage the potentially rich
interactions between such information sets.

To the best of our knowledge, the first such joint model was proposed in [178].
The main idea was to align the KG with the text corpus, and then train both KG
embedding and word embedding jointly, with the hope that both embeddings will
be informed and improved by each other since the embeddings for entities, relations
and words are all represented in the same vector space. Operations like inner
product and similarity between these different elements become meaningful and
insightful. The joint model has three ‘sub-models’: knowledge, text, and alignment.
The knowledge sub-model simply embeds entities and relations in the KG and is
actually a variant of TransE, with a special loss function for measuring fitness of the
embeddings to KG facts. The text sub-model embeds words, and is a variant of the
famous skip-gram word embedding model. Similar to the knowledge sub-model, it
comes with a loss function that measures the fitness of the sub-model embedding
to co-occurring word pairs. Finally, the alignment sub-model is designed to ensure
that the embeddings of the two other sub-models lie in the same space. Different
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such alignment mechanisms are introduced in their work and others that followed
it, including by entity names, Wikipedia anchors, entity descriptions etc. with more
such mechanisms continuing to be proposed in current research. Similar to the
other sub-models, the alignment sub-model’s loss function is defined to measure
the quality (‘fitness’) of alignment. We highlight that one of the major contributions
in using such joint models is the prediction of out-of-KG entities, i.e., phrases
appearing in web text but not included in the KG yet.

Yet another approach along these lines is the description-embodied knowledge
representation learning (DKRL) [185], which seeks to extend TransE to incorporate
entity descriptions. DKRL associates each entity with two vector representations,
one of which is structure-based and the other of which is description-based. The
former captures structural information (just like the original TransE), while the
latter captures textual information in the entity description. The description-based
representation is constructed using word embeddings. Entity, relation, and word
embeddings can all be learned simultaneously by minimizing a ranking loss function
when training. Experimental results demonstrated the superiority of DKRL over
TransE, particularly in the zero-shot scenario with out-of-KG entities.

Generally, incorporating text into the optimization tends to lead to empirical
improvements. However, we are not aware of a full-scale empirical study that
attempts to measure the extent of these improvements, and to assess the sensitivity
of such improvements with respect to important parameters such as the size and
quality of a KG, the relevance of the text corpus, and the noise in the text corpus.
Beyond normal performance benefits, a primary benefit of the joint model, as we
highlighted earlier, was its ability to gracefully handle entities that may not have
been observed in the actual KG.

4.2.4.3 Other Extrinsic Information Sets

Incorporating text and ontological information into KGEs continue to be important
directions of research, especially for improving KGEs using more context. However,
these information sets are by no means the only ones. Below, we briefly cover some
others.

Rules Ontologies are not just sets of inter-related concepts and properties. They
can also contain constraints and rules to further express the domain. Can rules, as
understood in this sense, be used to further influence KGE:s in a positive direction?
Wang et al. [177] proposed an approach utilizing rules to refine embedding
models during KG completion. In their work, KG completion is formulated as an
ILP (integer linear programming) problem. Specifically, the objective function is
generated from embedding models, and the ILP constraints from pre-specified rules.
Assertions inferred in this way will be the most preferred by the embedding models
but would also comply with all the rules. A similar work that combines rules and
embedding models via graphical models such as Markov logic networks was later
introduced in [181]. However, in both the papers above, rules are modeled separately
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from embedding models, serving as post-processing modules. They do not directly
influence embeddings, and hence cannot be used to obtain ‘better’ embeddings.

A later approach that tried to influence embeddings in a joint model that
leveraged rules directly in the embedding optimization was KALE [71], wherein
a model was proposed that simultaneously embeds assertions and rules. In this
framework, an assertion was modeled as a ground atom, with a well-defined truth
value. Also, logical rules are first instantiated into ground rules, with ground rules
then interpreted as complex formulae constructed by combining ground atoms with
logical connectives (e.g., V), and modeled by t-norm fuzzy logics [93]. The truth
value of a ground rule is a composition of the truth values of the constituent ground
atoms, via specific t-norm based logical connectives.

The values of these connectives lie within the range of [0,1], indicating to
what degree the ground rule is satisfied. In this way, KALE represents facts and
rules in a unified framework, as atomic and complex formulae respectively. After
unifying assertions and rules in this way, KALE minimizes a global loss involving
both to learn both entity and relation embeddings. These learned embeddings are
compatible not only with assertions in the training corpus but also with rules, which
is hoped to lead to better performance of embeddings in downstream applications.

KALE has inspired other variants. For example, in [157], the overall approach
is similar to KALE, but vector embeddings are introduced for entity pairs rather
than individual entities, making it particularly useful for relation extraction. This
is an example of an embedding which is (a priori) optimized keeping a target
application in mind. However, since entities do not have their own embeddings,
relations between unpaired entities cannot be effectively discovered.

Both KALE and the variant described above have the limitation that they have
to instantiate universally quantified rules into ground rules before learning the
embedding models. This grounding procedure is known to be time- and space-
inefficient, especially when there are many entities in the KG or the rules are too
complex. Some recent work has recognized this drawback, and proposed solutions
to address it.

Generally speaking, the ongoing research shows that rules will continue to find
more applications and uses in KGEs. The good performance of rule-supplemented
KGEs, and the researchers investing in this approach, both show that there is an
interesting synergy to be had between methods that were traditionally seen as
disparate (statistical and logical), though by no means incompatible. Future research
will show till what extent this synergy can be exploited, both in KGEs and other
similar areas.

Temporal information In [82], the critical observation was made that KG asser-
tions may often be time-sensitive, e.g., (Sharon Stone, ReceivedAward, Golden
Globe) happened in 1995. Based on this observation, a time-aware embedding
model was proposed, the idea being to impose temporal order constraints on time-
sensitive relation pairs, e.g., Starredln and ReceivedAward. Given such a pair
(i, ), the prior relation is supposed to lie close to the subsequent relation after
a temporal transition, i.e., Mr; ~ r; where M is a transition matrix capturing the
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temporal order information between relations. After imposing such constraints, the
authors in [82] are able to learn temporally consistent relation embeddings. In other
work, [58] tried to model the temporal evolution of KGs. That is, changes in a KG
always arrive as events, represented by labeled quadruples such as (h, 7, t, s; True)
or (h,r,t,s; False), indicating that the assertion (h, r, t) appears or vanishes at
time s, respectively. Each quadruple is then modeled as a four-way interaction
among h, 1, t, and s, where s is the vector representation of the time stamp. This
model was shown to perform well in dynamic domains such as sensors or medicine.
Overall, research has continued to intensify in this domain, and the link prediction
problem that we study later has been extended to temporal link prediction i.e. the
problem of predicting not just a link, but when it becomes stale (or active).

Paths and structures Relation paths may be understood as multi-hop relationships
between entities. A relation path is typically defined as a sequence of relations r; —

. — r; through which two entities can be connected on the graph. For example,
StarredIn — Shotln is a path linking Sharon Stone to Nevada, via an intermediate
movie node such as Casino. Relation paths contain semantic cues not otherwise
found in the node itself and can useful for KG completion.

More generally, it is possible to learn such ‘graph-aware embedding models’ by
leveraging different types of graph structures. In [62], such a model was proposed,
leveraging three types of graph structures: neighbor context (equivalent to triples
observed in a KG), path context (similar to relation paths just described) and edge
context (defined as the relations linking to and from that entity). The last is primarily
ontological e.g., the edge context of Sharon Stone might include relations such as
StarredIn, LivesIn, ReceivedAward etc. Intuitively, all of these relations indicate
collectively that Sharon Stone is a person, and more specifically, an entertainer.
Experimental results have demonstrated the effectiveness of incorporating these
graph structures in an embedding model. In other work, [83] suggested that the
plausibility of a triple tr = (h, r, t) could be estimated from its immediate context,
defined as the set of triples sharing the same head as tr, the set of triples sharing
the same tail, the set of triples with % as tail, the set of triples with ¢ as head, and
triples with arbitrary relations but where the two entities are s and 7. By using such
contexts, a system was found to perform better at the link prediction task (described
subsequently) on multi-relational data, such as KGs.

Other Entity Attributes When introducing KGs in Chap. 1, we argued that
relations in KGs can indicate both relationships between entities (e.g., StarredIn
indicates a relationship between Movie and Actor entities) or be used to define
entity attributes (e.g., the gender or birthdate of a person). Unfortunately, most
KG embedding techniques such as TransE do not explicitly distinguish between
these semantics. In [131], this distinction was made. Namely, entity-entity relations
were encoded in a tensor, while entity-attribute relations in a separate entity-
attribute matrix. The matrix and tensor are jointly factorized to learn representations
simultaneously for entities, and both types of relations. Similar ideas have since
been studied by other authors [105].
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4.2.5 Applications of KGEs

Since a knowledge graph embedding is essentially just a mapping from nodes and
edges to real-valued vectors, how can we tell when one embedding is better than
another? An uncontroversial approach is an ablation-style evaluation [182] where,
in the context of a given application, we evaluate an embedding against another
embedding keeping all else constant (including datasets and metrics). Although
such an evaluation is not without flaws, the biases (particularly, dataset bias [170])
are reduced if the benchmarks are large and real-world, and the applications have
relevance. Below, we describe several viable applications. Note that one such
application, Entity Resolution (ER) [66], has already been covered in detail in the
previous chapter. There are two contexts in which we can use KGEs for ER. First,
recall that there was a feature generation step whereby we attempted to extract a fea-
ture vector for each pair of entities that were consumed in the similarity step of ER.
Feature engineering is a labor intensive process and there is always the possibility
of missing something. By concatenating the embedding vectors of the two nodes,
we can get an alternate feature representation that could potentially be used for
better ER performance. Early results have been promising, though the hypothetical
utility of embeddings over engineered features is still in the preliminary stages of
ER research. A second possibility for utilizing embeddings for ER is to frame ER as
a special, supervised case of a relation or link prediction problem (described below).

ER is a good example of an in-KG application, which is conducted within the
scope of the KG where entity and relation embeddings are learned. Three other
examples of in-KG applications are link prediction, triple classification and entity
classification [176], all of which have been well-studied in the literature. It is not
atypical to assume that all of these applications can be cast as special cases of
knowledge graph refinement, with different definitions of refinement.

Link Prediction Link prediction is the problem of predicting whether a given entity
has a specific relation with another ‘hypothetical’ entity, i.e., predicting /& given
(r,t) or conversely, ¢ given (h,r), with the former task denoted as head entity
prediction (?, r, t), and the latter as tail entity prediction (%, r, 7). Link prediction
is a general problem that can be ‘fed into’ multiple out-of-KG applications e.g.,
question answering or even conversational Al [65, 168]. For example, (?, Starringln,
Terminator) is to predict the stars of the film Terminator, while (Sharon Stone,
StarringIn, ?) amounts to predicting films that Sharon Stone has starred in. This
example also shows that prediction can be a many-many problem i.e. there are
multiple correct predictions for both cases. Link prediction is a quintessential KG
completion task, i.e., adding missing knowledge to the graph, and has been tested
extensively in previous literature. An alternate name for the problem (among others)
is entity ranking. A similar idea can also be used to predict relations between two
given entities, i.e., (k, ?, t), which is usually referred to as relation prediction. In the
social network community, link prediction has a much more specific meaning than
in the KGE community; it is usually the problem of predicting future links (e.g.,
friendship) that might be formed between actors in the social network [110].
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With entity and relation representations learned during training, link prediction
can be done using ranking, similar to procedures developed over decades in the
Information Retrieval community. Take the prediction task (?, r, #) as an example, a
ranking system can ‘predict’ the head entity by taking every entity 4’ in the KG as a
candidate answer and calculating a score for each (%, r, t), using a scoring function.
In descending order of scores, this yields a ranked list of candidate answers. If the
embedding is ‘good’, the hope is that correct predictions will be ranked nearer to
the top of the list than incorrect predictions.

Similar to IR, the common way to evaluate such rankings is to use metrics such
as mean rank (the average of predicted ranks), mean reciprocal rank (the average of
reciprocal ranks), Hits@n (the proportion of ranks no larger than n), and AUC-PR
(the area under the precision-recall curve). Different metrics have different tradeoffs.
AUC-PR takes a balanced view of precision and recall, for example, while Hitsn is
oriented more towards recall than precision. For example, considering the Hits10
metric, and assuming there is only one correct prediction, a ranking where the
correct entity is at rank 1 will have the same Hits10 (=1.0) as one where the correct
entity is at rank 10. Similarly, if the correct entity is not in the top 10, but is at
rank 11 vs. rank 100, both would receive a Hits10 of 0.0. Note that, for individual
‘queries’, Hits10 can only be O or 1, but when averaged over many such queries,
ranges from O to 1 and can be used to assess the performance of an embedding on a
test set, on average.

Entity Classification Entity classification is the problem of classing entities under
different semantic categories, e.g., Sharon Stone is an Actor, Terminator is a
Movie and so on [129]. Generally, the relation that is considered for classification
purposes is the is-a relation. If the is-a relation has already been included in the
embedding process (so an embedding for the is-a relation exists after training),
entity classification can simply be treated as a special case of link prediction, and
the same evaluation procedures can be applied for it. This similarity between link
prediction, and both entity classification and entity resolution, highlights what was
noted earlier, namely, that they can all be thought of as very specialized cases of the
broader knowledge graph refinement (or completion) problem.

Triple Classification Triple classification can be thought of as a binary classifica-
tion problem [129]: given an arbitrary triple (h, r, t), is the triple true? A trivial case
is when the triple belongs in the training set, in which case it is clearly true. If this is
not the case, then it is not necessary that the triple is untrue, since the training data
was incomplete to begin with. One non-trivial issue with framing triple classification
as binary classification is the consistent combination of the individual head, tail and
relation embeddings in a way that can be used to predict the probability of truth. In
systems like the Trans* KGEs (but also others), a density function is used to make
such a prediction. The correct metric to use is accuracy, if the test data is balanced.
In most benchmarks that have been released so far for triple classification, this has
been the case. If the evaluation data is skewed, computing precision, recall or ROC
curves may be more appropriate.
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We conclude by noting that there are also out-of-KG applications, which are
generally less controlled since they are designed to scale to broader domains.
Such applications include relation extraction, question answering and recommender
systems. We do not explore out-of-KG applications in this book, but focus on in-KG
applications. More details on out-of-KG applications can be found in an overview
of KGEs in [176].

4.3 Summary

Knowledge Graph Embeddings (KGEs) are a powerful set of techniques for
representing entities, relations and even descriptions in a KG in a continuous real-
valued vector space. Although some of the reasoning capabilities permitted by
symbolic representations are lost in the process, the real-valued representations are
much less brittle than discrete symbols, and hence, more robust to noise and missing
information. Furthermore, recent efforts in the field have tried, with varying success,
to reconcile the benefits of continuous and discrete KG representations. Research in
this area is still ongoing, but it has become clear that KGEs are vital for the broader
problem of knowledge graph completion (or identification). Other applications of
KGEs include link prediction and entity classification.
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