
Chapter 5
Ecosystems

5.1 Introduction

Much of this book has described knowledge graphs and their construction at a
fairly technical level. In the introduction, we argued that domain-specific knowledge
graphs have started to come into their own, using examples such as publications and
academia, products and e-commerce, and social causes such as disaster relief. In
this chapter, we take a much broader view of knowledge graphs and their impact.
Specifically, we attempt an answer to questions such as, how high has adoption
of knowledge graphs been, and in what contexts? What bodes for the future of
knowledge graphs? Although there is a lot more still to come in knowledge graph
research, some crystallization has occurred over the last few years (in some cases,
decades), which will be the focus of this chapter.

5.2 Web of Linked Data

The Web has provided inarguable benefits but until recently, the same principles
that enabled the Web of documents to emerge and succeed have not been applied
to a hypothetical Web of data. Traditionally, data published on the Web was
made available as raw CSV or XML dumps, marked up as HTML tables, thereby
sacrificing much of its structure and semantics, or in other structured or semi-
structured formats that were not intuitive for humans to read or understand (in
their raw form). On the conventional Web, driven by hypertext, the nature of the
relationship between two linked documents is implicit, as the data format, i.e.
HTML, is not sufficiently expressive to enable richer semantics and modalities
e.g., determining that individual entities described in a particular document are
connected by typed links to related entities in the same (or other) documents. In
the real world, in contrast, such relationships (between entities) form the basis for
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knowledge and interaction. A guiding question has been, can knowledge graphs
provide the backbone for enabling such rich, real-world like semantics on the
Web?

There are multiple strands of evidence to indicate that the answer may be yes,
although the power of knowledge graphs in enabling semantics on the Web is not
limitless [18, 163]. Nevertheless, knowledge graphs published in recent years have
contributed greatly to an evolution of the Web from a global information space of
linked documents to one where both documents and data are interlinked. Underpin-
ning this evolution is a set of best practices, called Linked Data [25, 26, 75], for
publishing and connecting structured data on the Web. The adoption of the Linked
Data best practices has lead to the extension of the Web with a global data space
connecting data from diverse domains such as people, books, scientific publications,
music, proteins, drugs, statistical and scientific data, and reviews to only name a few.
Such a Web enables new application types. There are generic Linked Data browsers
which allow users to start browsing in one data source and then navigate along links
into related data sources, analogous to how one could start on an HTML webpage
on the conventional Web and then use it to browse to completely different webpages,
hosted on servers across the world. There are Linked Data search engines that crawl
the Web of Data by following links between data sources and provide expressive
query capabilities over aggregated data, similar to queries posed over databases.
The Web of Data also opens up new possibilities for domain-specific applications.
Unlike Web 2.0 mashups, which work against a fixed set of data sources, Linked
Data applications operate on top of an unbound, global data space. This enables
them to adapt and deliver more complete answers as new data sources appear on the
Web.

In its simplest form, Linked Data is about using the Web to create typed links
between multi-source data elements such as concepts, entities and properties. These
multiple sources may be as diverse as databases maintained by two organizations in
different geographical locations, or simply heterogeneous systems within a single
umbrella organization that have not traditionally been interoperable at the data level
because of problems such as varying schemas, data types etc. Technically, Linked
Data refers to data published on the Web in such a way that it is not only machine-
readable, but its meaning is explicitly defined (‘semantics’) [163], it is linked to
other external data sets, and can be linked to from external data sets.

While the primary units of the hypertext Web are HTML (HyperText Markup
Language) documents connected by untyped hyperlinks, Linked Data relies on RDF
(Resource Description Framework) documents [135]. However, rather than simply
connecting these documents, Linked Data uses RDF to make typed statements
that link arbitrary things in the world. The result, referred to as the Web of Data
throughout this chapter, may more accurately be cast as a Web of things in the
world, described by data on the Web.
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5.2.1 Linked Data Principles

In the introduction we stated that Linked Data is a set of four best practices for
publishing structured data on the Web [26]. Below, we state these four principles.
The technology stack used for implementing these principles and publishing the data
is described next, followed by the impact of the Linking Open Data (LOD) project
[11], a direct consequence of the widespread adoption of these four principles.

1. Use Uniform Resource Identifiers (URIs) as names for things. Even though
we primarily think of them as ‘web addresses’, URIs1 are much more than
just Uniform Resource Locators (URLs). In the broadest sense, a URI imposes
constraints on, and sets a standard for [17], naming entities and units of data that
people want to publish on the Web. In the case of HTML webpages, a URL serves
nicely as the ‘name’ of the page. By using similar, albeit broader, standards for
naming things, the first principle essentially ensures that we do not invent a new
naming system from scratch. There are other benefits associated as well, as the
second and third principles illustrate.

2. Use Hypertext Transfer Protocol (HTTP) URIs so that the names can be
looked up. By associating HTTP lookup with URIs, the second principle ensures
that the name of a thing is dereferencable. One simple way to do so is to ensure
that URIs are also URLs. However, recall that the goal of Linked Data is to
describe actual things, not just the description of things. By using techniques such
as re-direction in conjunction with the first and second principles, it is possible
to maintain this distinction. Intuitively, one could use a URI (not a URL) to name
the thing itself, but when dereferenced, a re-direction could be used to direct
the user to a URL which describes the thing. This is an elegant, rigorous way
of ensuring that the names of things, as well as the descriptions of those things,
could co-exist as separate artifacts on the Web.

3. When a URI is looked up, provide useful information by using established
standards such as RDF and SPARQL to publish and access information.
Resource Description Framework (RDF) and the SPARQL query language are
important standards that have been developed over more than a decade by long-
time researchers in the Semantic Web and Description Logics communities. The
third principle ensures that when a URI is looked up, the data is not delivered
in some ad-hoc format (e.g., as an Excel file), but instead conforms to well-
established, open standards that can be consumed in a predictable way by a
machine. Because the first and second principles ensure the use of HTTP and
URIs, it is easier than it would be otherwise to implement the third principle.
This also illustrates that the rules are not necessarily independent but build upon
each other for effectiveness.

1In actuality, the first principle if even broader, allowing the use of internationalized resource
identifiers rather than just URIs for naming things.
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4. Include links to other URIs, so that more relevant things can be discovered
through navigation. In a previous chapter, we covered the problem of Entity
Resolution, which was a step designed to ensure that two or more entity
‘mentions’ referring to the same underlying entity would get ‘resolved’. The
mechanics on how such a resolution would happen, once the co-referent entities
have been identified, were not described, since there is no one best practice.
In the Linked Data scenario, a practitioner could simply publish an additional
triple linking an entity in their dataset to equivalent entities in other datasets
already existing as Linked Data. For example, as we cover later, DBpedia has
emerged as a nexus for the openly published Linked Data on the Web, and since
most entities in Wikipedia are included in DBpedia [8], linking entities in a
dataset to DBpedia can often productively fulfill the fourth Linked Data principle.
However, we also note that, while ER can be an important and well-defined
mechanism for establishing links between entities in two different datasets, other
relations can also be used. The knowledge graph embedding (KGE) techniques
that we covered in the previous chapter could be a potent tool in this direction.

5.2.2 Technology Stack

The principles above illustrate that Linked Data is dependent on two technologies
fundamental to the Web itself [27]: Uniform Resource Identifiers (URIs) and the
Hypertext Transfer Protocol (HTTP). As we described earlier in the context of the
first Linked Data principle, while Uniform Resource Locators (URLs) have become
familiar as addresses for documents that can be located on the Web, Uniform
Resource Identifiers provide a more generic means to identify any entity that exists
in the world.

In the context of the second principle, where entities are identified by URIs using
schemes such as http:// and https://, they can be looked up by dereferencing the
URI leveraging the HTTP protocol. Thus, the HTTP protocol provides a simple,
yet universal, mechanism either for retrieving resources that can be serialized as
bytes, or retrieving (e.g., by using re-direction) descriptions of entities that cannot
physically be uploaded and sent across networks.2

URIs and HTTP are supplemented by the RDF model, which is critical to
implementing the vision of the Semantic Web and Linked Data. The use of RDF, and
other technologies like SPARQL that execute on top of RDF triplestores to enable
access to the data, is in response to the third Linked Data principle which requires
information retrieved to be useful (importantly, both to humans and machines).

2For example, one could use the protocol for retrieving the description of a book, since the protocol
cannot be used for sending the book itself across a network.

http://
https://
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Although HTML allows us to structure and link documents on the Web, RDF
provides a generic, graph-based data model with which to structure and link data that
describes things (i.e. entities) in the world and the varied properties (typed links) that
exist between entities. These typed links can have pre-defined semantics, such as
owl:sameAs, since they come from a standard (widely used) upper-level vocabulary
like SKOS, Dublin Core or RDFS [5]. These higher-level vocabularies are especially
useful in facilitating the re-use of ontological terms and properties, ensuring more
homogeneity than might be found. For example, properties like owl:sameAs are
overwhelmingly used to capture, and publish, the results of Entity Resolution [96]
and fulfill requirements such as the fourth Linked Data principle.

5.2.3 Linking Open Data

Because the Linked Data principles are recommended best practices, their success
can only be measured in terms of impact and adoption. Perhaps the most visible
evidence of impact has been an on-going, decentralized and international effort
called the Linking Open Data (LOD) project (Fig. 5.1),3 which has been described
as ‘a grassroots community effort founded in January 2007 and supported by the
W3C Semantic Web Education and Outreach Group4’. The main goal of the effort
is to bootstrap the Web of Data, and the adoption of the Linked Data principles,
by identifying existing, open-license datasets, converting these datasets to RDF
in accordance with Linked Data principles, and publishing them on the Web. An
auxiliary goal is to facilitate more publishing of such datasets, with the hope
that they become discoverable and usable by virtue of following the principles
(especially the fourth principle, which encourages inter-linking).

Historically, the earliest participants (still accounting for a major portion of
activity on LOD) were university academics, and small companies looking to gain a
competitive advantage with high-risk technology. However, LOD has since become
considerably more diverse, with significant current involvement from major players
in media, government and tech such as the BBC, Thomson Reuters, New York
Times and the Library of Congress. We posit that this growth is enabled by the
open nature of the project, where anyone can participate simply by publishing a
dataset according to the Linked Data principles and by interlinking it with existing
datasets (a special case of the fourth principle). Although the growth is not as super-
linear anymore as it was in the early stages of LOD, the ecosystem has remained
popular. In the next section, we describe one of the success cases (DBpedia), which
has found adopters across the spectrum in natural language processing, Semantic
Web, and knowledge discovery.

3http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
4http://www.w3.org/2001/sw/sweo/

http:/owl:sameAs
http:/owl:sameAs
http://esw.w3.org/topic/SweoIG/TaskForces/ CommunityProjects/LinkingOpenData
http://www.w3.org/2001/sw/sweo/
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Fig. 5.1 A visualization of LOD datasets. Each node is a dataset and links represent connections
between datasets in accordance with the fourth Linked Data principle. Colors represent domains
e.g., social networking datasets are in grey. (Image courtesy of lod-cloud.net)

5.2.4 Example: DBpedia

The best example, and most well-known outcome of LOD, has been the DBpedia
knowledge graph [8]. DBpedia was an early effort that sought to leverage the
structured information on Wikipedia, which is itself a community-powered and
crowdsourced encyclopedia. Figure 5.2 provides some intuition on how DBpedia
would represent the entity ‘Bob Marley’ by extracting information from Bob
Marley’s infobox on his Wikipedia page, ontologizing it with respect to the DBpedia
ontology, and rendering it as RDF. All four Linked Data principles are obeyed in
this transformation process. DBpedia is available both as RDF dumps, and as a
queryable SPARQL endpoint.
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Fig. 5.2 An example DBpedia dashboard fragment describing Bob Marley
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DBpedia generally occupies the central position in LOD diagrams because of
two inter-related characteristics: (1) it is open-world and contains many entities,
concepts and properties of interest, since it is ultimately described from Wikipedia
infoboxes, and (2) for various reasons, many publishers on LOD have chosen to link
to DBpedia entities to fulfill the fourth Linked Data principle. Although DBpedia is
not dynamically fresh in the same vein as Wikipedia, which is constantly maintained
by a community-enforced system of edits, revisions and additions, DBpedia is
periodically derived from Wikipedia by executing extractors on Wikipedia dumps.
Thus it is relatively fresh compared to more static datasets on LOD.

Overall, DBpedia continues to be well-maintained and widely used. In part, this
is because of its dependence on Wikipedia, which has continued to be popular, but
also because numerous applications across the Semantic Web, knowledge discovery
and NLP communities now leverage it for weak supervision and distant supervision-
style problems. Just like Wikipedia, DBpedia is also multi-lingual, which opens up
even more applications.

5.3 Google Knowledge Vault

The Google Knowledge Vault, which indirectly populates some of the search
features in Google, is a Web-scale probabilistic knowledge base that combines
extractions from Web content (obtained via analytics over text, tabular data, page
structure, and even human annotations) with prior knowledge derived from exist-
ing knowledge repositories [55]. Because these are distinct information sources,
supervised machine learning methods have to be used for knowledge fusion. At the
time of publication, this Knowledge Vault (KV) was assumed to be substantially
bigger than any previously published structured knowledge repository, and featured
a probabilistic inference system that could compute calibrated probabilities of
assertion correctness. The authors of the Knowledge Vault paper report results from
several studies and experiments illustrating the utility of the method [55].

Fundamentally, the KV was no different at an architectural level (see Fig. 5.3
for the architectural description of the KV) than the workflow proposed in this
book. That is, there were three main components. The first component was a layer
of extractors. Recall that, in an earlier chapter, we provided extensive details on
information extraction, which is among the first steps in constructing a domain-
specific knowledge graph from raw data. The KV is no different, although it is
not single-domain. Extraction methods include text (including relation extraction,
although the authors run standard methods at much larger scale), and Web IE
methods like parsing the DOM trees of HTML pages, and also tables extracted from
HTML. The KV also contains data from pages annotated manually with elements
from ontologies like schema.org and openGraphProtocol.org [67, 69]. Schema.org
is described in more detail in the following section.

However, rather than learn all its knowledge about the world from just IE,
the KV also relied on prior knowledge by using graph-based priors. In essence,
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Fig. 5.3 A schematic showing the construction and workflow of the Google Knowledge Vault

these systems would learn the prior probability of each possible triple, based on
triples stored in an existing KB. Technically, the procedure was different from the
KGEs that we covered in the previous chapter; however, the concept was similar.
For example, one of the applications of knowledge graph embeddings was triples
classification, namely, the task of determining the probability of correctness of
a hypothetical triple, given all the triples observed during training. Incorporating
graph-based priors into the KV relied on a similar intuition.

Finally, the third key innovation in the KV architecture was an information or
knowledge fusion box that would take the outputs of extractors, as well as those
based on graph-based priors, and reconcile the facts based on supervised machine
learning. Knowledge fusion was like the test phase in a triples classification system.
In the actual paper, the authors consider several principled supervised machine
learning methods.

Although it is not known whether the KV constitutes the core technology pow-
ering the current iteration of the Google Knowledge Graph [164], its influence on
the construction of Web-scale knowledge graphs from heterogeneous structured and
unstructured data sources is undeniable. The effort has proven difficult to replicate
in non-industrial settings, however. Some of the components, like information
fusion, have also been superseded by recent innovations such as knowledge graph
embeddings. However, the role of extractors and the leverage of prior knowledge
in reconciling contradictions continue to be important in existing KG construction
pipelines.
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5.4 Schema.org

Schema.org is a shared vocabulary that webmasters can use to structure metadata on
their websites and to help search engines understand the content being published
[69]. Although the term schema.org would seem to suggest a website (which
it is, leading to the project’s homepage) it is contextually used to refer to the
vocabulary itself, the markup on the webpages as well as the overall project, which is
described as ‘a collaborative, community activity with a mission to create, maintain,
and promote schemas for structured data on the Internet, on web pages, in email
messages, and beyond’.

As an example, consider the movie ‘Bohemian Rhapsody’ as described by
Rotten Tomatoes, a popular movie and review aggregation website. Many of the
dynamic elements on the page (such as the reviews and the Tomatometer rating)
have semantics associated with them according to the concepts and properties in the
schema.org vocabulary. We highlight some example snippets in Fig. 5.4, with the
aggregate rating being one example of an element that is visually rendered on the
screen. When a search engine like Google scrapes this data, it is able to make use
of this information to provide users with a better search experience (e.g., providing
better answers to queries like ‘rotten tomatoes top movies’, see Fig. 5.5).

In fact, the initiative itself was launched on 2 June 2011 by Bing, Google and
Yahoo! to create, support and develop a common set of schemas for structured

Fig. 5.4 Example of schema.org snippets embedded in Rotten Tomato’s HTML webpages
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Fig. 5.5 Example of dynamic, enhanced search by commercial search providers using extracted
schema.org information

markup on webpages. This would indicate that enhanced search has been one of
the primary goals for the initiative. Later that year, Yandex joined the initiative. The
main motivation behind using schema.org is that the markup can be recognized by
search engine spiders and other parsers, which enables a layer of semantics to be
incorporated into search engine optimization. Recall that the Semantic Web (which
includes Linked Data [26]) vision was similar [18], but the principles of Linked Data
do not necessarily apply to schema.org. As one example, much of the published
schema.org markup does not even attempt to link to other schema.org markup.
Consequently, the schema.org ecosystem is less like KGs in the LOD universe
[11], and more like isolated knowledge fragments that provide local context to the
webpages in which they are embedded. However, there have been efforts to try and
integrate LOD and schema.org with some recent papers proposing to find and add
schema.org fragments to the LOD. The work is still in its early stages, however. At
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the very least, viable solutions to Entity Resolution will be required to facilitate such
a vision successfully, since without ER, the fourth principle of Linked Data cannot
be fulfilled.

Much of the vocabulary on Schema.org was inspired by earlier formats, such
as microformats, FOAF, and OpenCyc. Microformats, with its most dominant
representative hCard, continue (as of 2015) to be published widely on the web,
where the deployment of Schema.org has strongly increased between 2012 and
2014. In 2015, Google began supporting the JSON-LD format, and as of September,
2017 recommended using JSON-LD for structured data whenever possible. Tools
are also widely available to validate schema.org markup on published webpages.
For example, tools such as the Google Structured Data Testing Tool, Yandex
Microformat validator, and Bing Markup Validator can be used to test the validity
of published or scraped schema.org data. In documentation released by Google,5

it could be reasonably inferred that certain schema.org classes and properties,
particularly people and organizations, influence the results of Google’s Knowledge
Graph.

5.5 Where is the Future Going?

Even the brief examples illustrated in this chapter show that KG ecosystems are
continuing to flourish and come into their own, powering a full range of applications
across communities as diverse as NLP, semantic search and conversational AI [65].
These ecosystems are different enough that, at first sight, one might be tempted to
think that they are evolving independently of each other. Yet there are connections,
some of which are only starting to materialize. For example, some authors have
started publishing work on how to reconcile decentralized, highly disconnected
schema.org knowledge fragments with the larger Linked Data ecosystem. Freebase,
which was used to power the KV and has since been taken over by Google, was an
essential part of the Linking Open Data project in its initial phase, and has since
been replaced with Wikidata [174]. Nevertheless, despite all these connections, the
question remains: is there some way to reconcile all of these different KGs under a
single umbrella, one that is open and accessible to all?

An example of one such initiative, still in a seedling stage, is the Open
Knowledge Network6 (OKN), which is attempting to jumpstart and realize the long-
held vision of a common semantic information infrastructure for the future [116].
Recognizing the motivation that natural interfaces to large knowledge structures
have the potential to impact science, education and business to an extent comparable
to the WWW, the OKN initiative argues that KG-centric services like Alexa and

5https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-
social-links
6https://okfn.org/network/

https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-social-links
https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-social-links
https://okfn.org/network/
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Cortana, or the Google search engine, are limited in their scope of knowledge, not
open to direct access or contributors beyond their corporate firewalls, and can only
answer relatively limited questions in their business areas. OKN wants to pioneer
an architecture that will allow stakeholders to encode knowledge for their topics
of interest and be able to hook them into the larger network, without having to go
through gatekeepers (such as Google or Apple). Furthermore, once the knowledge
is encoded, access to this should not be restricted to a small priesthood of SQL
or other programmatic interface users. There will be a wide range of interfaces,
including natural language interfaces, graphical interfaces and visualizations which
no one has even invented yet. Developers will be able to independently create
more sophisticated programs for answering queries, providing summaries that help
regular people make decisions in their lives.

In order to realize the vision of an open Web-scale knowledge network, an
attempt like the Google Knowledge Vault is required but at a scale that (arguably)
is even more extensive. As ambitious as this may sound, the steering members
of OKN argue that the technologies for realizing such a network already exist.
However, it is also undeniable that there are many hurdles in realizing such an
ambition, including obvious issues of cost, incentives and maintenance. From a
purely research standpoint however, the OKN would be far more comprehensive
than any existing KG ecosystem, and would likely trigger revolutionary advances in
KG-centric applications.

While the OKN is likely a longer-term initiative that will require the coalescing of
multiple research communities, there are several medium-term research challenges
that researchers have already started focusing on. Entity Resolution continues to be a
vital area of research, especially considering our arguments in the earlier chapter on
how existing systems continue to fall short on several requirements that are essential
for conducting ER on large KGs. Information extraction (IE) also continues to
advance each year, though some kinds of IE are witnessing more attention than
others. NER research, for example, seems to have plateaued, but relation and event
extraction systems continue to be presented, even at the time of writing. Low-
supervision IE has also seen a surge of interest. Finally, IE for languages other than
English, and particularly for ‘low-resource’ languages for which good translation
services are not available, has seen an increased surge in research interest due to
programs funded by agencies like DARPA.
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