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Abstract

We present & novel transation model
based on ree-o-string alignmen template
(TAT) which describes the aligmm
tween @ source parse tree and a target
string. A TAT is capable of generating
‘both terminals and non-terminals and per-
forming reordering at both low and high
levels. The model is linguistically syntax-
based because TATS axe extract
‘maticaly from word-aligned, source side
parsed parallel texts. To ranslte  source
sentence, we frst employ a parser 0 pro-
duce a source parse tree and then ap-
ply TATs to transform the tree into a tar-
get string.  Our experiments show that
the TAT-based model significantly outper-
forms Phareoh, a stte-of-e-srt decoder
for phirase-based models.

1 Introduction

Phrase-based translation models (Marcu and

Wong, 2002; Koehn et al, 2003; Och and Ney,

2004), which go beyond the original IBM trans-

lation models (Brown et al, 1993) ! by model-

ing translations of phrases rather than individual

‘words, have been suggested to be the state-of-the-

art i Statisical machine trenslation by empiricsl

evalustions

In phrase based models, phrases are usually
srings of adjacent words instead of syntactic con-
stituens, exceling at cepturing local reordering
and performing translations that are localized to

it pper s ke

B

sing
Hire I st lenihof e gt sing, and J s s e
of

substrings thatare common enough to be observed
on training data. However, a key limitation of
‘phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
‘phrase reordering is modeled in terms of offset
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making litle or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syniax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, weating translation s a pro-
cess of parallel parsing of the source and tar-

ct language via @ synchronized grammar. Al
shawi et al_ (2000) represent each production in
parallel dependency tree as a finite transducer
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on muli-
text grammars. Graehl and Knight (2004) describe

ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
‘which are formally productions of a synchronous
context-fiee grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on & probabilisc synchronous dependency in-
sert grammer, & version of synchronous gram-
‘mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammers or tree-based transduc-
tion rules o model both source and target lan-
guages.

‘Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use & parser in
the target language to trin probabilties on a setof
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chical phrase pairs (Chizng, 2005) with tree siruc-
side. At the same time, we face

o compute & list of candidate translations for T
by replacing the non-terminals of S(z) with can-

therisk
pairs. For example, the phrase pair

A4t &4 #K s President Bush made

can never be oblained in form of TAT from the
TSA in Figure 3 because there is no subtree for
that source sting.

4 Decoding

We approach the decoding problem as a bottom-up
beam search.
To translate a source sentence, we employ &
parser to produce a parse tree. Moving bottom-
i ce parse tres, we compute 2
list of candidate translations for the input subtree

subtrees.

Sefage

rooted at each node with a
Candidate translations of subirees are placed in
stacks. Figure 4 shows the organization of can-
didate translation stacks.

el

Figure 4: Candidate translations of subirees are
placed in stacks according o the root index set by
postorder transversel

A candidate translation contains the following
information:

1. the partial ranslation

2. the accumulated feature values

3. the accumlated probability

ATAT z is usable to a parse tree T if and only
i T (z) is rooted at the root of T and covers part
of nodes of 7. Given a parse ree T, we find all
usable TATs. Given a usable TAT z, if T(z) is
equal to 7, then $(2) is 2 candidate translaion of
T. 1 () covers only & portion of T, we have

Figure s fon construction

For example, when computing the candidate
anslations for the tree rooted at node 8, the TAT
used in Figure § covers only & portion of the parse
tree in Figure 4. There are two uncovered sub-
rees that are rooted at node 2 and node 7 respec-
Hence, we replace the third symbol with

the candidate translations in stack 2 and the first
symbol with the candidate translations in stack 7
At the same time, the feature values and probebil-
ities are also accumulated for the new candidate
wanslasions

“To speed up the decoder, we limit the search
space by reducing the number of TATS used for
each input node. There are two ways fo l
TAT table size: by a fixed limit (tatTable-limit) of
how many TATS are retrieved for each input node,
and by a probebilty treshold (tatTable-threshold)
that specify that the TAT probability has to be
above some value. On the other hand, instead of
Keeping the ful list of candidates fora given node,
we keep a top-scoring subset of the candidates.
“This can also be done by a fixed limit (stack-fimil)
or a threshold (stack-threshold). To perform re-
combination, we combine candidate translations
that share the same leading and trailing bigrams
in each stack.

5 Experiments
Our experiments were on Chinese-to-English
ranslation. The training corpus consists of 31, 149
sentence pairs with 843,256 Chinese words and
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operations that transform a target parse tree nto &
source siing.

‘Paying more attention t0 source language anal-
ysis, Quirk et al. (2005) employ a source language
dependency parser, a target language word scg-
mentation component, and an unsupervised word
alignment component t lean treelt translations
from parallel corpus,

Inthis paper, we propose a satstical translation
model based on tree-to-sring alignment template
‘which deseribes the alignment between a source.
parse tree and a target sring. A TAT is cape-
ble of generating both terminals and non-terminzls
and performing reordering at both low and high
levels. The model is linguistcally syntax-based
because TATs are extracted automasically from
‘word-aligned, source side parsed parallel texts
o translate & source sentence, we first employ a
parser to produce 2 source parse tree and then ap-
ply TATs to transform the tree no 2 target string.

‘One advantage of our model is that TAT can
be automatically acquired to capture linguisticlly.
moivated reor t both low (word) and high
(e, clus) e, s, he i of
model is less computationally expen-
sive than tree-l-{re models. Similarly to (Galley
etal., 2004), the tree-o-string alignment templates
discussed in this paper are actually transformation
rules. The major difference is that we model the
syntax of the source language instead of the target
side. As a result, the task of our decoder is o find
the best target string while Galley's is to seck the
‘most likely target r

2 Tree-to-String Alignment Template

A treeto-sting alignment template i 2 triple
(T, 3, A), which describes the alignment A be-
1 a source parse tree T 3

o target string § = EY. A source string Y/,
which is the sequence of leaf nodes of T(F ),
consists of both terminals (source words) and non.
terminals (phrasal categorics). A target tring
is also composed of both terminals (arget words)
end non-lerminals (placeholders). An alignment
A is defined as a subset of the Cartesian product
of source snd targt symbol positions:

AC{Gii)g=1,.. Ty W

e s () s deses pe e To s sotions
overhead,we se T Simi

=1,

Figwe 1 shovs e TATs swomasealy
learned from training data, that
demonsirating a TAT graphically, we n‘pmml
‘non-terminals in the target strings by blanks.

igure 1: Examples of tree-to-sting alignment
templates obtained in training

In the following, we formally describe how to
introduce tree-to-sring alignment templates into
probabilistic dependencies to model Pr{eff{)

In a first sep, we introduce the hidden variable
T(f7) that denotes a parse tree of the source sen-
tence f

Prieflf!) EP?‘\&MTI W @

= ¥ Prrisd) W )Pw»mmn W) O
UL

Next, another hidden variable D is introduced
1o detach the source parse tree (/') into a se-
quence of K subtrees T witha prorder transver-
S We s i cach e i poces
a tanget swing .. As a resul, the seq
of subvees T" produces a sequence of mgex
strings S, which can be combined serially to

target sentence ¢l. We assume that

Priel D.T(f7). ) = Pr(S|TE) because f
s actually generated by the derivaton of 57
Note that we omit an explicit dependence on the
detachment D to avoid notational overhead.

Pr(IT(7), 5) = X Prel, DTG, 1) &)
T
PO HPrEAD TN ) ©)
T
S Pr(DIT(), ) Pr(SEIT) ®
>

K
= ZPv(D\r(//) bl I P& ()

cometion will be as folows. We
v s:«‘m\m\ e o e el by dsnoion

T () demoes e sing .

s, fo mode-be
ey doatons we e g 50

Figure 2: Graphic illustration for translation pro-

To further decompose Pr(S|T), the tree-to-
sing et eplt dentd by e vl
2,is introduced as @ hidden ver

Pr(8|T) = Y. Pr(3.21T) ®
3 Pr(aIT)Pr(31s,T) ©

‘Therefore, the TAT-based translation model can
be decomposed into four sub-models:

1. parse model: Pr(T(f{)|f7)

2. detachment model: Pr(DIT(f?), /)

3. TAT selestion model: Pr(z|T)

4. TAT application model: Pr(Slz, T)

Figure 2 shows how TATs work 10 perform
trenslation. First, the input source sentence is
parsed. Next, the parse tree s detached o five
sublrecs with  preorder transversal. For each sub-
rce, a TAT is selected and applied to produce a
sring. Finally, these sirings are combined serially

10 generate the translation (we use X to denote the
‘non-terminal):

= X3 X of China
= economic X of China
= cconomic development of China

Following Och and Ney (2002), we base our
model on log-linear framework. Hence, all knowl-
edge sources are described s feature functions
ihat include the given soure siing f7, e target
string ef, and hidden variables. The hidden vari-
able T(/) is omitted because we usually make
use of only single best output of a parser. As we
assume that all detachment have the same probe-
bility, the hidden veriable D is elso omitied. As
a result, the model we actually adopt for exper-
iments i limited because the parse, detachment,
and TAT application sub-models are simplified

Prie], 2| M)
St o XDl ('] ,/, B

)

For our experiments we use the following seven
feature functions * that arc analogous 1o defeult
feature set of Pharaoh (Kochn, 2004). To simplify
the notation, we omit the dependence on the
den variables of the model.

| B

mehst) = [ MO

NG 8(1(:). )

halel, f{) = log H NG

el 7) = tog T teaT(S2) - 80T,
=

halel, i) = Zogﬁl:z[s(l)\T(l]J'J(T(l‘u
hlfl) = K

e ) = g [rtelecn )

=1 o

puin i i e s

1. 2009, v ek ekl il s 1 s ¢
20 teminals, we e he et o 1. We e lex()

)

(NN
NP (NR) (NN))
(NP (NR # F) (NN))

(NP (NR) (NN £5))

(NP (NR AT ) (NN & %)) | President [ Bush

(VP (VW) (NN)) X [a]X,
(VP (VVAA) (NN)) ‘made[ 2| X
(VP (VW) (NNEH)) | X a] spoech

(IP(NP) (VP))

(VP (VVZA) (NN i#)) | made |a | speech |

X[ Xy

‘Table 1: Examples of TATS extracted from the TSA in Figure 3 with h

3 Trai

2
To extract tree-to-string aligoment templates Fom
a word-aligned, source side parsed sentence pair
{T(f7),ct, A), we necd frst identify TS4s (Tree-
String-Alignment) using similar criterion as sug-
gested in (Och and Ney, 2004). A TSA isa tiple
{T(f}?) €%, A) that is in accordance with the
following constaints:

LVij) e <i<hon<j<hp

2. T(f)is a subtree of T(f7)

Given a TSA (T(f7),cl,A), a triple
)

L T( el )

aTsA

2. (724 is rooted at the direct descendan of
the root node of T(f7;)

3iSi<i<i
4V ed b <i<ioh<i<i

Basically, we extract TATs from a TSA
{D(f3), €, A) using the following two rules:

1. I7(J3?) contaias only one node,
then (T(/37), i, A) is a TAT

2. If the height of T(f37) is greater than one,

Figure 3: An example of TSA
Usually, we can extract a very large amount of

TAT from training data using the above rules,
making both waining and decoding very slow.

chiod) s i sub 74 if and only  Tyerefor, we impose tire restrictions to reduce

the magnitude of extzacted TATS:
1. A third constraint is added to the definition of
TSA:

34" 3y <5 <haandjy €57 < o
and (i1, ') € A and (ig,§") € A
‘This constraint requires that both the first
and last symbols in the targe string must be
aligned 10 some source symbols,

2. The height of 7(2) is limited 10 n0 greater
than .

3. The number of direct descendants of & node
of 7(2) s limited 10 no grester than c.
Tl o e ATy et e TSA
in Figure 3 with h = 2 an

60
System Veatures BLEGZ ]
T olel)) 00573 £ 00033
Pharach T oelf) wp 3019 = 0.0083
AT 7 6(71e)  ex(f1e) - (e 1) = Iex(elf) ~ pp ¥ wp | 0.2089 £ 0.0089
hy .1639 + 0.0077
Lynx hy +he + by 2100 = 0.0089
hy~hy+hy+hy+hs~hs+hy 2178 = 0.0080

‘Table 2: Comparison of Pharach and Lynx with different feature seftings on the test corpus

949,383 English words. For the language model,
we used SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a trigram model with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) on the 31, 149 English sentences. We se-
lected 571 short sentences from the 2002 NIST
MT Evaluation test set as our development cor-
pus, and used the 2005 NIST MT Evaluation test
set as our test corpus. We evaluated the transla-
tion quality using the BLEU mefric (Papineni et
al,,2002), as calculated by mieval-v1 1b.pl with its
default setting except that we used case-sensitive
‘matching of n-grams.

51 Pharaoh
“The baseline system we used for comparison was
Pharaoh (Koehn et al., 2003; Koehn, 2004), a
trecly available decoder for phresc-based transla
tion models:
lelf) = palf1e)* x pLyg(e) 1M x
(617D x TN (10

‘We ran GIZA++ (Och and Ney, 2000) on the
in

2005).  We used defuult pruning setings for
Pharaoh except that we set the distortion it to
4

52 Lynx
On the same word-aligned training data, it took
us abaut one month to parse al the 31, 149 Chi-
nese sentences using & Chinese parser written by
Deyi Xiong (Xiong et al, 2005). The parser was
rained on aricles 1 — 270 of Penn Chinese Tree-
bank version 1.0 and achieved 79.4% (F1 mea-
sure) as well as a 44% relative decrease in er-
ror rate, Then, we performed TAT extraction de-
scribed in section 3 with h = 3 and ¢ = 5
and obtained 350, 575 TATS (88, 066 used on test
corpus). To run our decoder Lynx on develop-
et &nd test corpus, we set atTable-limit = 20,
tetTable-threshold = 0, stackclimit
stack-threshold = 0.00001

53 Results
Table 2 shows the results on test set using Pharaoh

and Lynx with different feature setings. The 95%
confidence i mmvals were computed using Zhang’s

seting, and then applied the refinement rule “diag-
and” described in (Koehn et al, 2003) to obtain
a single many-to-many word alignment for cach
sentence pair. After that, we used some heuristics,
which including rule-based translation of num-
bers, dates, and person names, o further improve
the aligament accuracy.

the word-ligned bilingual corpus, we
obiained 1,231,959 bilingual phrases (221,453

us) using the tra

publicly released by Philipp Kochn with ts defoult

e

“To perform minimum error rate training (Och,
2003) to tune the feature weights 1 maximize the
system’s BLEU score on development ei, we used
optimizeVSIBMBLEU.m (Venugopal and Vogel,

(Zhang et al, 2004). We mod-
ifcd it to confomm t0 NIST’s curent defation
of the BLEU brevity penalty. For Pharaoh, cight
features were used: distortion model d, a trigram
lenguage model I, phrase translation probabili-
ties ¢(f|) and o(e] ), lexical weightings lex( f|e)
and lex(c| ), phrese penalty pp, and word penaly
wp. For Lyns, seven features described in sec-
tion 2 were used. We find that Lynx outperforms
Pharaoh with all feature settings. With full fea-
tures, Lynx achieves an absolute improvement of
0.006 over Pharaoh (3.1 relative). This differ-
ence is statistically significant (p < 0.01). Note
that Lynx made use o only 88,066 TATS on test
corpus while 221, 453 bilingual phrases were used
for Pharach.

The feature weights oblained by minimum er-
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X2 Xaof Xa i e e, We v e s o T4 RN et Gt by e
= X» of China. s for decoding by K and the lngthof et s by 1. sub TSAs of (T'(f]7), €, A‘ T(f{'), TATs may be treated as syntactic hierar-
611 612
System | Features ]
@ [ [N e e T References Franz . Och and Hormamn Ney. 2002 D

[Fharaon [ 00476 |

oi7e o611
e s et osont o1

Table 3: by minimum

——
[ [02178= 00080
[t bp | 02240  0.0083

‘Table 4: Effect of using bilingual phrases for Lynx

ror rate training for both Pharach and Lyn are
shown in Table 3. We find that 6(fc) (i.c. hz) is
0t a helpful feature for Lyns. The reason is
we use only a single non-terminal symbol instead
of assigning phrasal categories to the target sring.
In addition, we allow the target string consists of
nly non-terminals, meking translation decisions
not always based on lexical evidence.

54  Using bilingual phrases
It is interesting to use bilingual phrases to
strengthen the TAT-based model. As we men-
tioned before, some useful non-syntacic phrase
pairs can never be obtained in form of TAT be-
cause we restict tha there must be & correspond-
ing parse tree for the source phrase. Moreover,
it takes more time 1o obtain TATS than bilingual

gram language models were used for Lynx. One
was trained on the 2.6 million English sentences
‘and another was trained on the first 13 of the Xin-
hua portion of Gigaword corpus. We also included
rule-besed translations of named entiies, dates,
and umbers. By making use of these data, Lynx
achieves a BLEU score of 02830 on the 2005
NIST Chinese-to-English MT evaluation test set,
which is & very promising result for linguistically
syntax-based models.

6 Conclusion

In this peper, we introduce tree-to-string align-
ment templates, which can be automatically
leamed from syntactically-annotated training data.
The TAT-based translation model improves trans-
aion quality significantly compared with a state-
of-the-art phrase-based decoder. Treated as spe-
cial TATS without tree on the source side, bilingual
phrases can be uiilized for the TAT-based model to
get further improvement

It should be emphasized that the restrictions
s imposs on TAT exirmoin it he cxressive

power of T

phrases on pansing
is usually very time-consuming.

Given an input subiree (), if FY* i atring
of terminals, we find ll bilingual phrases that the
source phrase is equal to FJ2. Then we build a
TAT for each bilingual phrase (7', el', A): the
tree of the TAT is T(F?), the string is ef', and
the alignment is A. If a TAT built from a bilingual
phrase s the same with 2 TAT in the TAT table, we
prefer to the greater ranslation probabilities.

Table 4 shows the effect of using bilingual
‘phrases for Lynx. Note that these bilingual phrases
are the same with those used for Ph

55 Results on large data
We also conducted an experiment on large data to

removing e s s improve transla-
tion quality, but leads 1 large memory requie-
ments, We feel that both parsing and word eliga-
‘ment qualities have important effects on the TAT-
based model. We will etrain the Chinese parser
on Penn Chinese Treebank version 5.0 and try to
improve word alignment quality using log-lincar
‘models as suggested in (Liu et al., 2005)
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Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-
best list, which rules out many potentially
good alternatives. We instead propose forest
reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference 1s intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

good alternatives. We instead propose forest

reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference 1s intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

B RE T4

good alternatives. We instead propose forest

reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference 1s intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

B RE T4

reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference 1s intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

B RE T4

reranking, a method that reranks a packed for- ﬁ'ﬂ\] ﬁ& it 'H_./A
est of exponentially many parses. Since ex-

act inference 1s intractable with non-local fea-

tures, we present an approximate algorithm in-

spired by forest rescoring that makes discrim-

inative training practical over the whole Tree-

bank. Our final result, an F-score of 91.7, out-

performs both 50-best and 100-best reranking

baselines, and is better than any previously re-

ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

B RE T4

good alternatives. We instead propose forest -

reranking, a method that reranks a packed for- ?izﬂ -.MM it 'H_./A
est of exponentially many parses. Since ex-

act inference 1s intractable with non-local fea-

tures, we present an approximate algorithm in-

spired by forest rescoring that makes discrim-
.. .. cal ] hole Tree-

bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

B RE T4

good alternatives. We instead propose forest -
reranking , a method that reranks a packed for- ?izﬂ ]ﬁ& it 'H_./A
est of exponentially many parses. Since ex-

act inference 1s intractable with non-local fea-

tures, we present an approximate algorithm in-

@Zf | ]jﬂiﬁ% EZ{M E/\j S lrfed b fo.rest resco.nn that makes discrim
inative training practical over the whole Tree-

bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

AR

good alternatives. We instead propose forest o

reranking, a method that reranks a packed for- @Z'ﬂ ]ﬁ& it 'H_./A
est of exponentially many parses. Since ex-

act inference 1s intractable with non-local fea-

tures, we present an approximate algorithm in-

@Zf | ]jﬂiﬂ% EZ{M E/\j S lrf%d b fo.rest resco.nn that makes discrim
inative training practical over the whole Tree-

bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



{5l

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-

AR

good alternatives. We instead propose forest -
reranking , a method that reranks a packed for- @Z'ﬂ ]ﬁ& it 'H_./A
est of exponentially many parses. Since ex-

act inference 1s intractable with non-local fea-

tures, we present an approximate algorithm in-

@Zf | ]jﬂiﬂ% EZ{M E/\j S lrf%d b fo.rest resco.nn that makes discrim
inative training practical over the whole Tree-

bank. Our final result, an F-score of 91.7, out-

performs both 50-best and 100-best reranking S 0 (BT
baselines, and is better than any previously re- iﬁﬂ -‘Hm“ﬁ EF’ZLZ_

ported systems trained on the Treebank. 8 !

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

14



TN EFxIs



TENEIR

- LERAE IR EH—T, RJLERIERBIRINIIE

(1L}

E%i“’::

- BRRAS IR TS E IS
FiLERANDHERRFEATE.

- ATXOZAEE, IBUER D




- = ILAVIZEE

- TR Z T A

- BERES I AL

© FEIAEATRYZ

F

17



- = ILAVIZEE

- AR E T4

- BERES I AL
(3o A ] S (2

- EUFHYIZEE

- BRI A
BT BRI T AR ki
- A AR Rk

17



. EESEE NS )

- HREfpEEsiE0), BsFPO0aRAIeIE

AIALfE
- BAREGE
- XIETQZIB R 3B
- ERE RN L




F\a) 5 2 1ET

The need to segment and label sequences arises in many
different problems in several scientific fields. Hidden
Markov models (HMMs) and stochastic grammars are well
understood and widely used probabilistic models for such
problems. In computational biology, HMMs and stochas-
tic grammars have been successfully used to align bio-
logical sequences, find sequences homologous to a known
evolutionary family, and analyze RNA secondary structure
(Durbin et al., 1998). In computational linguistics and
computer science, HMMs and stochastic grammars have
been applied to a wide variety of problems in text and
speech processing, including topic segmentation, part-of-
speech (POS) tagging, information extraction, and syntac-
tic disambiguation (Manning & Schiitze, 1999).

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In /CML 2003. 19
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We believe that it is important to make available
to syntax-based models all the bilingual phrases that
are typically available to phrase-based models. On
one hand, phrases have been proven to be a simple
and powerful mechanism for machine translation.
They excel at capturing translations of short idioms,
providing local re-ordering decisions, and incorpo-
rating context information straightforwardly. Chi-
ang (2005) shows significant improvement by keep-
ing the strengths of phrases while incorporating syn-
tax into statistical translation. On the other hand,
the performance of linguistically syntax-based mod-
els can be hindered by making use of only syntac-
tic phrase pairs. Studies reveal that linguistically
syntax-based models are sensitive to syntactic anal-
ysis (Quirk and Corston-Oliver, 2006), which is still
not reliable enough to handle real-world texts due to
limited size and domain of training data.

Yang Liu, Yajuan Lv, and Qun Liu. Improving Tree-to-Tree Translation with Packed Forests. In ACL 2009.
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Finding word alignments between parallel texts,

however, 1s still far from a trivial work due to the di-

versity of natural languages. For example, the align-
ment of words within idiomatic expressions, free
translations, and missing content or function words
1s problematic. When two languages widely differ
in word order, finding word alignments is especially
hard. Therefore, it is necessary to incorporate all

useful linguistic information to alleviate these prob-
lems.

Tiedemann (2003) introduced a word alignment
approach based on combination of association clues.
Clues combination is done by disjunction of single
clues, which are defined as probabilities of associa-
tions. The crucial assumption of clue combination
that clues are independent of each other, however,
1s not always true. Och and Ney (2003) proposed

Yang Liu, Qun Liu, and Shogun Lin. Log-Linear Models for Word Alignment. In ACL 2005.
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compute within the baseline system. But despite its
apparent success, there remains a major drawback:
this method suffers from the limited scope of the -
best list, which rules out many potentially good al-
ternatives. For example 41% of the correct parses
were not in the candidates of ~30-best parses in
(Collins, 2000). This situation becomes worse with
longer sentences because the number of possible in-
terpretations usually grows exponentially with the
sentence length. As a result, we often see very few
variations among the n-best trees, for example, 50-
best trees typically just represent a combination of 5
to 6 binary ambiguities (since 2° < 50 < 2°).

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.
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SE=avEN:NEZBED 2

step | action | rule stack coverage System Setting English-French ~ Chinese-English
Model 4 s2t 7.7 20.9
0 cooooo0o0 Model 4 t2s 9.2 30.3
GIZA++ Intersection 6.8 21.8
Union 9.6 28.1
1 S rs [The President will] 000000 Refined method 5.9 18.4
Cross-EM  HMM, joint 5.1 18.9
PR

2 S 1 [The President will] [visit] ¢ecocooce Model 4 s2t 7.8 205
+Model 4 t2s 5.6 18.3
+link count 5.5 17.7
3 R, [The President will visit] ®eocoo0oe +cross count 5.4 17.6
. +neighbor count 5.2 17.4

/\m o Vigne +exact match 5.3 -
4 S T4 [The President will visit] [London in April| eecccee +linked word count 52 17.3
+bilingual dictionary - 17.1
+link co-occurrence count (GIZA++) 5.1 16.3
5 R, [The President will visit London in April] eccccce +link co-occurrence count (Cross-EM) 4.0 15.7
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Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:
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tion on k that for all k&, U - &*! > ki. Be-
cause U - a*t1 < ||U|| ||a**+!||, it follows that
||@k 1| > k.
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Forest Reranking: Discriminative Parsing with Non-Local Features

*

Liang Huang
University of Pennsylvania

Philadelphia, PA 19104
lhuang3@cis.upenn.edu

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-
best list, which rules out many potentially
good alternatives. We instead propose forest
reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference is intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

1 Introduction

Discriminative reranking has become a popular
technique for many NLP problems, in particular,
parsing (Collins, 2000) and machine translation
(Shen et al., 2005). Typically, this method first gen-
erates a list of top-n candidates from a baseline sys-
tem, and then reranks this n-best list with arbitrary
features that are not computable or intractable to

local non-local

conventional reranking only at the root
DP-based discrim. parsing | exact N/A

this work: forest-reranking | exact on-the-fly

Table 1: Comparison of various approaches for in-
corporating local and non-local features.

sentence length. As a result, we often see very few
variations among the n-best trees, for example, 50-
best trees typically just represent a combination of 5
to 6 binary ambiguities (since 2° < 50 < 25).
Alternatively, discriminative parsing is tractable
with exact and efficient search based on dynamic
programming (DP) if all features are restricted to be
local, that is, only looking at a local window within
the factored search space (Taskar et al., 2004; Mc-
Donald et al., 2005). However, we miss the benefits
of non-local features that are not representable here.
Ideally, we would wish to combine the merits of
both approaches, where an efficient inference algo-
rithm could integrate both local and non-local fea-
tures. Unfortunately, exact search is intractable (at
least in theory) for features with unbounded scope.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.
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Abstract

We present a novel translation model
based on tree-to-string alignment template
(TAT) which describes the alignment be-
tween a source parse tree and a target
string. A TAT is capable of generating
both terminals and non-terminals and per-
forming reordering at both low and high
levels. The model is linguistically syntax-
based because TATs are extracted auto-
matically from word-aligned, source side
parsed parallel texts. To translate a source
sentence, we first employ a parser to pro-
duce a source parse tree and then ap-
ply TATs to transform the tree into a tar-
get string. Our experiments show that
the TAT-based model significantly outper-
forms Pharaoh, a state-of-the-art decoder
for phrase-based models.

1 Introduction

Phrase-based translation models (Marcu and
Wong, 2002; Koehn et al., 2003; Och and Ney,
2004), which go beyond the original IBM trans-
lation models (Brown et al., 1993) ! by model-
ing translations of phrases rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

The mathematical notation we use in this paper is taken
from that paper: a source string f = fl,...,fj,....f, is
to be translated into a target string ¢! = ey,...,ei,...,

Here, I is the length of the target string, and J is the 1ength
of the source string.

7

I Lij

substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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1 Introduction

Phrase-based translation models (Marcu and
Wong, 2002; Koehn et al., 2003; Och and Ney,
2004), which go beyond the original IBM trans-
lation models (Brown et al., 1993) ! by model-
ing translations of phrases rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

!The mathematical notation we use in this paper is taken
from that paper: a source string f{ = fi,... ,fJ,....f, is
to be translated into a target string ¢! = ey,...,ei,...,
Here, I is the length of the target string, and J is the 1ength
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substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
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proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of

609

ional Linguistics and 44th Annual Meeting of the ACL, pages 609-616,
Sydney, July 2006 ©2006 Association for Computational Linguistics

Joint Tokenization and Translation

Xinyan Xiao ' Yang Liu ! Young-Sook Hwang ! Qun Liu { Shouxun Lin

fKey Lab. of Intelligent Info. Processing
Institute of Computing Technology
Chinese Academy of Sciences
{xiaoxinyan, yliu, liuqun, sxlin}@icc .ac.cn

Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokenize
and translate jointly. Taking a sequence
of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.

1 Introduction

Tokenization plays an important role in statistical
machine translation (SMT) because tokenizing a
source-language sentence is always the first step
in SMT systems. Based on the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems : string-based systems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,
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Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
and tree-based systems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline as separate tokenization and transla-
tion because they are divided into single steps.
As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data

1200

Proceedings of the 23rd I ional Confe

e on Comp i
Beijing, August 2010

| Linguistics (Coling 2010), pages 1200-1208,

28



Tree-to-String Alignment Template for Statistical Machine Translation

Yang Liu , Qun
Institute o
Chinese

iu, and Shouxun Lin

uting Technology
emy of Sciences

No.6 Kexueyuan SSuth Road, Haidian District

P. O. Box 2704, B
{yliu,liu

Abstract

We present a novel translatj
based on tree-to-string align
(TAT) which describes the
tween a source parse and a target
string. A TAT is capal of generating

levels. The model
based because T.
matically from word-aligned, source side
parsed parallel textsgTo translate a source
sentence, we first loy a parser to pro-
duce a source p: tree and then ap-
ply TATs to transfolin the tree into a tar-
get string. Our efberiments show that
the TAT-based moddl significantly outper-
forms Pharaoh, a sfte-of-the-art decoder
for phrase-based mdWels.

1 Introduction

Phrase-based translati
Wong, 2002; Koehn e
2004), which go beyo:

models (Marcu and
1., 2003; Och and Ney,
the original IBM trans-
lation models (Brow: , 1993) ! by model-
ing translations of phr&¥¥s rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

!The mathematical notation we use in this paper is taken
from that paper: a source string f{ = fi,... ,fJ,....f, is
to be translated into a target string ¢! = ey,...,ei,...,
Here, I is the length of the target string, and J is the 1ength
of the source string.

7

eijing, 100080, China

,sxlin}@ict.ac.cn

substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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lation systems using 1-best tokenizations
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coder achieves significant improvements
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substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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lem, we take a further step to tokenize
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of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
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in a discriminative framework, our joint
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lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
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coder achieves significant improvements
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substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokeng
and translate jointly. Taking
of atomic units that ¢ mbined to
form words in differ as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.

1 Introduction

Tokenization plays an important role in statistical
machine translation (SMT) because tokenizing a
source-language sentence is always the first step
in SMT systems. Based on the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems : string-based systems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,
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*HILab Convergence Technology Center
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yshwang@sktelecom.com

source  string

tokenization

translat
I—I translation

target

source  string tokenization
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Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
and tree-based systems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline as separate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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Abstract

We present a novel translatj
based on tree-to-string align
(TAT) which describes the
tween a source parse and a target
string. A TAT is capal of generating

levels. The model
based because T.
matically from word-aligned, source side
parsed parallel textsgTo translate a source
sentence, we first loy a parser to pro-
duce a source p: tree and then ap-
ply TATs to transfolin the tree into a tar-
get string. Our efberiments show that
the TAT-based moddl significantly outper-
forms Pharaoh, a sfte-of-the-art decoder
for phrase-based mdWels.

1 Introduction

Phrase-based translati
Wong, 2002; Koehn e
2004), which go beyo:

models (Marcu and
1., 2003; Och and Ney,
the original IBM trans-
lation models (Brow: , 1993) ! by model-
ing translations of phr&¥¥s rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

The mathematical notation we use in this paper is taken
from that paper: a source string f{ = fi,... ,fJ,....f, is
to be translated into a target string ¢! = ey,...,ei,...,

Here, I is the length of the target string, and J is the 1ength
of the source string.
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substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of

609

Proceedings of the 21st Inter

| Linguistics and 44th Annual Meeting of the ACL, pages 609-616,

Sydney, July 2006 ©2006 Association for Computational Linguistics

Joint Tokenization and Translation

Xinyan Xiao ! Yang Liu' Young-

fKey Lab. of Intelligent Info. Processing

Institute of Computing Technology
Chinese Academy of Sciences

{xiaoxinyan, yliu, liuqun, sxlin}@icc .ac.cn

Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokeng
and translate jointly. Taking
of atomic units that ¢ mbined to
form words in differ as input, our
joint decoder produces a tokenization on
the source side andj@ translation on the
target side simultanfbusly. By integrat-
ing tokenization andMtranslation features
in a discriminative ework, our joint
decoder outperform@the baseline trans-
lation systems usingjll -best tokenizations
and lattices significafilly on both Chinese-
English and Kor: hinese tasks. In-
terestingly, as a tokfihizer, our joint de-
coder achieves signfilcant improvements
over monolingual Clfihese tokenizers.

1 Introduction

ortant role in statistical
ecause tokenizing a

Tokenization plays an i
machine translation (
source-language sente always the first step
in SMT systems. Based¥pn the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems : string-based systems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,

wang ! Qun Liu’ Shouxun Lin

*HILab Convergence Technology Center
C&I Business
SKTelecom

yshwang@sktelecom.com

source  string

tokenization

translat
I—I translation

target

source  string tokenization

target translation

Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
and tree-based systems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline as separate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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coding phase. ! Based on max-translation decod-
ing and max-derivation decoding used in conven-
tional individual decoders (Section 2), we go fur-
ther to develop a joint decoder that integrates mul-
tiple models on a firm basis:

e Structuring the search space of each model
as a translation hypergraph (Section 3.1),
our joint decoder packs individual translation
hypergraphs together by merging nodes that
have identical partial translations (Section
3.2). Although such translation-level combi-
nation will not produce new translations, it
does change the way of selecting promising
candidates.

e Two models could even share derivations
with each other if they produce the same
structures on the target side (Section 3.3),
which we refer to as derivation-level com-
bination. This method enlarges the search
space by allowing for mixing different types
of translation rules within one derivation.

e As multiple derivations are used for finding
optimal translations, we extend the minimum
error rate training (MERT) algorithm (Och,
2003) to tune feature weights with respect
to BLEU score for max-translation decoding
(Section 4).
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Figure 1: An example of word alignment between
a pair of Chinese and English sentences.

phrase and (2) no words inside one phrase can be
aligned to a word outside the other phrase.

After all phrase pairs are extracted from the
training corpus, their translation probabilities can
be estimated as relative frequencies (Och and Ney,
2004):

o7 _ _count(f,8)
é(elf) = e count(f, &) ®

where count( f,€) indicates how often the phrase
pair (f, €) occurs in the training corpus.
Besides relative frequencies, lexical weights

(Koehn et al., 2003) are widely used to estimate
how well the words in f translate the words in

ear space to encode the probabilities of exponen-
tially many alignments. We develop a new algo-
rithm for extracting phrase pairs from weighted
matrices and show how to estimate their relative
frequencies and lexical weights. Experimental re-
sults show that using weighted matrices achieves
consistent improvements in translation quality and
significant reduction in extraction time over using
n-best lists.

2 Background

Figure 1 shows an example of word alignment be-
tween a pair of Chinese and English sentences.
The Chinese and English words are listed horizon-
tally and vertically, respectively. The dark points
indicate the correspondence between the words in
two languages. For example, the first Chinese
word “zhongguo” is aligned to the fourth English
word “China”.

Formally, given a source sentence f = fi =
fis.oo, fis..., frand a target sentence e = ef =
€1,...,€i,...,er, we define a link | = (j,1) to
exist if f; and e; are translation (or part of trans-
lation) of one another. Then, an alignment a is a
subset of the Cartesian product of word positions:

aC{(ji):j=1,....J5i=1,...., 1} (1)

Usually, SMT systems only use the 1-best align-
ments for extracting translation rules. For exam-
ple, given a source phrase f and a target phrase
&, the phrase pair (f,é) is said to be consistent
(Och and Ney, 2004) with the alignment if and
only if: (1) there must be at least one word in-
side one phrase aligned to a word inside the other

€. To do this, one needs first to estimate a lexi-
cal translation probability distribution w(e|f) by
relative frequency from the same word alignments
in the training corpus:

count(f,e)
5. count (7, )

Note that a special source NULL token is added
to each source sentence and aligned to each un-
aligned target word.

As the alignment @ between a phrase pair ( f, €)
is retained during extraction, the lexical weight
can be calculated as

w(elf) = 3)

pw(élf:&) H |{JI(.7 z) e a}l Zw(ellf]) (4)

If there are multiple alignments & for a phrase
pair (f,€), Koehn et al. (2003) choose the one
with the highest lexical weight:

Pu(Elf) = max {pu(éf,a)} ®)

Simple and effective, relative frequencies and
lexical weights have become the standard features
in modern discriminative SMT systems.

| 3 Weighted Alignment Matrix I

‘e believe that offering more candidate align-
ments to extracting translation rules might help
improve translation quality. Instead of using n-
best lists (Venugopal et al., 2008), we propose a
new structure called weighted alignment matrix.

We use an example to illustrate our idea. Fig-
ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that

some links (e.g., (1,4) corresponding to the word

1018
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c)
the resulting weighted alignment matrix that takes the two alignments as samples, of which the initial

probabilities are 0.6 and 0.4, respectively.

pair (“zhongguo”, “China™)) occur in both align-
ments, some links (e.g., (2,3) corresponding to the
word pair (“de”,“of”)) occur only in onc align-
ment, and some links (e.g., (1,1) corresponding
to the word pair (“zhongguo”, “the”)) do not oc-
cur. Intuitively, we can estimate how well two
words are aligned by calculating its relative fre-
quency, which is the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4, respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matrix shown in
Figure 2(c). Therefore, each word pair is associ-
ated with a probability to indicate how well they
are aligned. For example, in Figure 2(c), we say
that the word pair (“zhongguo”, “China”) is def-
initely aligned, (“zhongguo”, “the”) is definitely
unaligned, and (“de”, “of”) has a 60% chance to
get aligned.

Formally, a weighted alignment matrix m is a
J x I matrix, in which each element stores a link
probability p,,(j,i) to indicate how well f; and
e; are aligned. Currently, we estimate link proba-
bilities from an n-best list by calculating relative
frequencies:

where

5(a, j,i) = { 1 (ji)€a ©

0 otherwise

Note that A is an n-best list, p(a) is the probabil-
ity of an alignment a in the n-best list, é(a, j, 1)
indicates whether a link (j,¢) occurs in the align-
ment a or not. We assign 0 to any unseen
alignment. As p(a) is usually normalized (i.e.,
Y aen P(a) = 1), we remove the denominator in
Eq. (6).

Accordingly, the probability that the two words
f; and e; are not aligned is

ﬁm(j: l) =10- pm(jzi) ©)

For example, as shown in Figure 2(c), the prob-
ability for the two words “de” and “of” being
aligned is 0.6 and the probability that they are not
aligned is 0.4.

Intuitively, the probability of an alignment a is
the product of link probabilities. If a link (7,4)
occurs in a, we use p,,(j,4); otherwise we use
Pm(j,7). Formally, given a weighted alignment
matrix m, the probability of an alignment a can
be calculated as

J
=1I H(pm(J, x 8(a,4,1) +
j=li

. 0 Pacn P(a) X 6(a, 4, i) ( i) x (1—68(a,j,4)) (10)
pm(jyi) = =eeNIZ b (6) Pm(J;t s
v Zaen 2(%) I that th £ all ali b
_ . t proves that the sum of all alignment proba-
= p(a) x &(a, j,%) @
an\ bilities is always 1: Y c 4 pm(a) = 1, where A
1019

—————

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. Weighted Alignment Matrices
for Statistical Machine Translation. In EMNLP 2009.
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Figure 4. Examples of attendlng to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A stop sign is on a road with a

mountain in the background.

A little girl sitting on a bed with A group of EeoEIe sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and
Joshua Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In ICML 2015.
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We believe that offering more candidate align-
ments to extracting translation rules might help
improve translation quality. Instead of using n-
best lists (Venugopal et al., 2008), we propose a
new structure called weighted alignment matrix.
We use an example to illustrate our idea. Fig-
ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that
some links (e.g., (1,4) corresponding to the word

economy - - @ - economy - - @ - economy (0 [0 [1.0] 0
S S - e e - s [0 [0.4)0.4{0
China o - - - China o - - - China [1.0l0 [0 |0
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c)
the resulting weighted alignment matrix that takes the two alignments as samples, of which the initial
probabilities are 0.6 and 0.4, respectively.

pair (“zhongguo”, “China’)) occur in both align-
ments, some links (e.g., (2,3) corresponding to the
word pair (“de”,“of”)) occur only in one align-
ment, and some links (e.g., (1,1) corresponding
to the word pair (“zhongguo”, “the”’)) do not oc-
cur. Intuitively, we can estimate how well two
words are aligned by calculating its relative fre-
quency, which is the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4, respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matrix shown in
Figure 2(c). Therefore, each word pair is associ-
ated with a probability to indicate how well they
are aligned. For example, in Figure 2(c), we say
that the word pair (“zhongguo”, “China”) is def-
initely aligned, (“zhongguo, “the”) is definitely
unaligned, and (“de”, “of’) has a 60% chance to
get aligned.

Formally, a weighted alignment matrix m is a
J m‘ix, in which each element stores a link
probability py,(j,1) to indicate how well f; and
e; are aligned. Currently, we estimate link proba-
bilities from an n-best list by calculating relative
frequencies:

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. Weighted Alignment Matrices
for Statistical Machine Translation. In EMNLP 2009.
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2.2 Soft Connection

The hard connection between two sequence-to-sequence
models suffers from the information bottleneck issue. There
exists a difficult trade-off between approximation variance
and computational complexity. One can expect perfect ap-
proximation when sampling plenty of sentences for a sen-
tence z,,. However, the real situation is far from perfect
due to the exponential space of possible sentences x and the
limited training time, resulting in the bottleneck of infor-
mation communication between two models. Motivated by
the work in [Ko&isky et al., 20161, we propose a soft con-
nection method to alleviate this issue. This soft connection
mechanism connects two components more closely, relaxing
the constraints of information communication substantially.

Specifically, instead of generating discrete words 2" from
the bottom sequence-to-sequence model, we pass a sequence

of distributions z™" over the vocabulary V, which will later
serve to reconstruct y™:

~ / /
' = ps(ze|{x] ..., z7 1}, he, 27)
n’ o/
CBt (ad $t
/
ht—i—l = f(hta .CE? ,zn)
z = {z%, ..., 2"}

We substitute the sequence of distribution vectors ™' for
conventional one-hot vectors as the input to the top model.

Then we compute the input embedding w?l at tth time step
as follows:

, N
n __ .n'
wy =y * By

Using Expected Word Embeddings

Inspired by [Kodisky et al., 2016], we propose to use expected
word embeddings rather than single word embeddings to cir-
cumvent this drawback. Given a sampled source translation
x(®) € S(z(™), at each time step in the decoder of the pivot-
to-source model, an expected word embedding for the ¢-th
source word x; is calculated as

IE:1:|z(n) x(<2 0, [G(CE)]

= Z P(x|z(n) x<t,03_,$)e(:v) (15)
z€EV,

where V), is the vocabulary of the source language.

As a result, provided with a sampled source sentence x (%),
the expected vector representation of a source sentence x can
be approximated with the concatenation of expected word
embeddings, which is defined as

5(x(3), z(n)’ V:z:, 9\2—):1:)
T
- {]Ex|z(n) NOF N le(z)] }t—l (16)

<t>

Note that £ (x(s), z(™ VY, Oz_m) depends on the selection of
(s)
x\%/,
As the expected word embeddings consider the entire vo-
cabulary, we can leverage the expected word embeddings to

implicitly represent the full search space X (z(”)) approxi-
mately:

]Ex|z<n) - JR [log P(y(n) |X; 9x—>y)]
1

¥ 8@

Hao Zheng, Long Cheng, and Yang Liu. Maximum Expected Likelihood Estimation
for Neural Machine Translation. In I[JCAI 2017.
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We first used the validation sets to find the optimal setting of our approach: noisy
generation, the value of n, feature group, and training corpus size.

Table 2 shows the results of different noise generation strategies: randomly shuf-
fling, inserting, replacing, and deleting words. We find shuffling source and target
words randomly consistently yields the best results. One possible reason is that the
translation probability product feature (Liu, Liu, and Lin, 2010) derived from GIZA++
suffices to evaluate lexical choices accurately. It 1s more important to guide the aligner
to model the structural divergence by changing word orders randomly.

Table 3 gives the results of different values of sample size n on the validation sets.
We find that increasing n does not lead to significant improvements. This might result
from the high concentration property of log-linear models. Therefore, we simply set
n = 1 in the following experiments.

Table 4 shows the effect of adding non-local features. As most structural diver-
gence between natural languages are non-local, including non-local features leads to
significant improvements for both French-English and Chinese-English. As a result,
we used all 16 features in the following experiments.

Table 5 gives our final result on the test sets. Our approach outperforms all unsu-
pervised alig-ners significantly statistically (p < 0.01) except for the Berkeley aligner
on the French-English data. The margins on Chinese-English are generally much larger
than French-English because Chinese and English are distantly related and exhibit
more non-local structural divergence. Vigne used the same features as our system but
was trained in a supervised way. Its results can be treated as the upper bounds that our
method can potentially approach.

Yang Liu and Massing Sun. Contrastive Unsupervised Word Alignment
with Non-Local Features. arXiv:1410.2082[cs.CL].

42



AZRANEX

A1 0.95 0.94 0.96

%3 0.84 0.85 0.83

B ES 0.92 0.91 0.93

EE2 0.87 0.88 0.86




AZRANEX

A1 0.95 0.94 0.96

%3 0.84 0.85 0.83

B ES 0.92 0.91 0.93

EE2 0.87 0.88 0.86




AZRANEX

A1 0.95 0.94 0.96

%3 0.84 0.85 0.83

B ES 0.92 0.91 0.93

EE2 0.87 0.88 0.86




AZRANEX

—

F1 P R

A1 0.95 0.94 0.96

%3 0.84 0.85 0.83

B ES 0.92 0.91 0.93

EE2 0.87 0.88 0.86

ZhEIRF: M L[S, MAm@A
baseline® £, FNINAEE T, =

—5|




—
F1 P R
FeA|] 0.95 0.94 0.96
HEH41 084 085 0.83
EH3 092  0.91 0.93
HEH2 087 088 0.86

Eli/7: ML

FHZRAVIX

baseline’® L, EAINAEET,

p
E)HE1 085
HEfg2 087
EHE3  0.92
Bfl  0.95

1T, MEMRA

B 2245

RTE

0.83

0.88

0.91

0.94

= —

Hx /O

0.84

0.86

0.93

0.96

—5|

43



FAZRATRIG

%, Bk, WEHIX5

Method Feature MTO02 | MTO3 MT04 MTO5 MTO06 MTO8 | All
RNNSEARCH | N/A 3345 | 3093 3257 2986 29.03 21.85 | 29.11
CPR N/A 33.84 | 31.18 33.26 30.67 29.63 22.38 | 29.72
BD 34.65 | 31.53 33.82 30.66 29.81 2255 | 29.97
PT 3456 | 31.32 3389 30.70 29.84 22.62 | 29.99
POSTREG LR 3439 | 3141 34.19 3080 29.82 22.85 | 30.14
BD+PT 3466 | 3205 3454 3122 30.70 22.84 | 30.60
BD+PT+LR 3437 | 3142 34.18 3099 2990 22.87 | 30.20
BD 36.61 | 3347 36.04 3296 3246 24.78 | 32.27
PT 35.07 | 32.11 3473 31.84 30.82 23.23 | 30.86
CP 3468 | 31.99 34.67 3137 3080 23.34 | 30.76
this work LR 3457 | 31.89 3495 3180 3143 23.75 | 31.12
BD+PT 36.30 | 33.83 36.02 3298 3253 2454 | 32.29
BD+PT+CP 36.11 | 33.64 3636 33.11 3253 2457 | 32.39
BD+PT+CP+LR || 36.10 | 33.64 3648 33.08 3290 24.63 | 32.51
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Figure 3. Plots of 2 x 2 error rates for HMMs, CRFs, and MEMMs on randomly generated synthetic data sets, as described in Section 5.2.
As the data becomes “more second order,’ the error rates of the test models increase. As shown in the left plot, the CRF typically
significantly outperforms the MEMM. The center plot shows that the HMM outperforms the MEMM. In the right plot, each open square
represents a data set with o < %, and a solid circle indicates a data set with a > % The plot shows that when the data is mostly second
order (v > %), the discriminatively trained CRF typically outperforms the HMM. These experiments are not designed to demonstrate

the advantages of the additional representational power of CRFs and MEMMs relative to HMMs.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic Models for

Segmenting and Labeling Sequence Data. In /CML 2003.
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Segmenting and Labeling Sequence Data. In /CML 2003.

46



WX TERE IS



ICIEY PSR GS




ICIEY PSR GS

=B5IFE

Tl

S 21X (AT AR ={EArejectioniyIE




ICIEY PSR GS

=28 %\ HEZ1ENX (o] AE#Z{EurejectionpyiE

B RS SR, fRZIARZIZAITTIE

48



ICIEY PSR GS

=A5|

HEZ1ENX (o] AE#Z{EurejectionpyiE
w BT FIFER), TRZIRZIZINIAITEL

N2

BT HEIE T ZE R A TOEIEBBIRA T YRR BRI



ANl 518

JJL
13

ey
|B.

N2

16

el

HEZ1ENX (o] AE#Z{EurejectionpyiE

XTI fE

BRID FIMMER), RZIRZIZIMIAITIE

AHOT D ZERERIALIEY

1E B

B (RA0 T YERO RIS

48



ICIEY PSR GS

2B5|IHEEIEX (LB ZE ArejectionfyIE

B RS SR, fRZIARZIZAITTIE

N2

BT HEIE T ZE R A TOEIEBBIRA T YRR BRI

N
B A R R A B S ERZ A

Il




ICIEY PSR GS

=B5IFE

lml

s 218X (AT DAEZ{ErejectiongyIE

B

N2

BSOS FIRIER), RS FATIATR

A

E

BT HEIE T ZE R A TOEIEBBIRA T YRR BRI

1F
HIRARRRXN ARG E S EIRZRVIERE

J 5 BIA TERIX LY B ARRY TERIBIFTIE

48



ICIEY PSR GS

SABS|HEEILX (FILABRRE{ENrejectiondVyIER)

WS IRER), R RRFIRIAITEES
B #H TS E WA A TVEIEBRRAI TR IR

lml

N
EERA RIS ML R T SERZIIEE

@S A A LERIIT EE O E ARAY TERYBIFT IS
MRS MBIZRIREIKES, RSERHITIAR

48



{5l

2 Related Work

The CVG is inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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2 Related Work

The CVG is inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations
As mentioned in the introduction, there are several
approaches to improving discrete representations
for parsing. Klein and Manning (2003a) use
manual feature engineering, while Petrov et
al. (2006) use a learning algorithm that splits
and merges the syntactic categories in order
to maximize likelihood on the treebank. Their
approach splits categories into several dozen
subcategories. Another approach is lexicalized
parsers (Collins, 2003; Charniak, 2000) that
describe each category with a lexical item, usually
the head word. More recently, Hall and Klein

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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2 Related Work

The CVG is inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations Deep Learning and Recursive Deep Learning
As mentioned in the introduction, there are several Early attempts at using neural networks to de-
approaches to improving discrete representations scribe phrases include Elman (1991), who used re-
for parsing. Klein and Manning (2003a) use ’ .
: : . current neural networks to create representations
manual feature engineering, while Petrov et ,
of sentences from a simple toy grammar and to

al. (2006) use a learning algorithm that splits , .. :
and merges the syntactic categories in order analyze the linguistic expressiveness of the re-

to maximize likelihood on the treebank. Their sulting representations. Words were represented
approach splits categories into several dozen as one-on vectors, which was feasible since the
subcategories. Another approach is lexicalized grammar only included a handful of words. Col-
parsers (Collins, 2003; Charniak, 2000) that lobert and Weston (2008) showed that neural net-
describe each category with a lexical item, usually works can perform well on sequence labeling lan-

the head word. More recently, Hall and Klein

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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in a factored parser. We extend the above ideas
from discrete representations to richer continuous
ones. The CVG can be seen as factoring discrete
and continuous parsing in one model. Another
different approach to the above generative models
1s to learn discriminative parsers using many well
designed features (Taskar et al., 2004; Finkel et
al., 2008). We also borrow 1deas from this line of
research in tm generative
PCFG model with discriminatively learned RNNSs.

This paper uses several ideas of (Socher et al.,
2011b). The main differences are (1) the dual
representatWesamdiscrete categories and
vectors, (11) the combination with a PCFG, and
(1i1) the syntactic untying of weights based on
child categories. We directly compare models with
fully tied and untied weights. Another work that
represents phrases with a dual discrete-continuous
representation is (Kartsaklis et al., 2012).

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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definition, there are already enough people to do that.”
--- G. H. Hardy (1877-1947)
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Ludwig Boltzmann
1844-1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
| classical thermodynamics where it
quantlfles the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = kInW in which W represents the
number of possible microstates in a macrostate, and
k ~ 1.38 x 10~%* (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s arqu-

_ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs._The continued attacks on his work

lead to bouts of depression, and eventually he com-

_mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = £1n W is carved on
Boltzmann’s tombstone.

Pattern Recognition and Machine Learning, C.

Bishop
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Perceptro

> W _

Frank Rosenblatt
1928-1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
e 704 computer at Cornell in 1957,
mmp but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin_Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
In widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

Pattern Recognition and Machine Learning, C.

Bishop
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Abstract

Current tree-to-tree models suffer from
parsing errors as they usually use only 1-
best parses for rule extraction and decod-
ing. We instead propose a forest-based
tree-to-tree model that uses packed forests.
The model is based on a probabilis-
tic synchronous tree substitution gram-
mar (STSG), which can be learned from
aligned forest pairs automatically. The de-
coder finds ways of decomposing trees in
the source forest into elementary trees us-
ing the source projection of STSG while
building target forest in parallel. Compa-
rable to the state-of-the-art phrase-based
system Moses, using packed forests in
tree-to-tree translation results in a signif-
icant absolute improvement of 3.6 BLEU
points over using 1-best trees.

1 Introduction

Approaches to syntax-based statistical machine
translation make use of parallel data with syntactic
annotations, either in the form of phrase structure
trees or dependency trees. They can be roughly
divided into three categories: string-to-tree mod-
els (e.g., (Galley et al., 2006; Marcu et al., 2006;
Shen et al., 2008)), tree-to-string models (e.g.,
(Liu et al., 2006; Huang et al., 2006)), and tree-to-
tree models (e.g., (Eisner, 2003; Ding and Palmer,
2005; Cowan et al., 2006; Zhang et al., 2008)).
By modeling the syntax of both source and tar-
get languages, tree-to-tree approaches have the po-
tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to learn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al., 2007; DeNeefe et al., 2007; Zhang et al.,
2008).

Compactly encoding exponentially many
parses, packed forests prove to be an excellent
fit for alleviating the above two problems (Mi et
al.,, 2008; Mi and Huang, 2008). In this paper,
we propose a forest-based tree-to-tree model. To
learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
source forest to a translation forest and then finds
the best derivation that has the source yield of one
source tree in the forest. Comparable to Moses,
our forest-based tree-to-tree model achieves an
absolute improvement of 3.6 BLEU points over
conventional tree-based model.
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Appendix A: Table of Notation

j
fi
fo

source sentence

sequence of source sentences: fy, ..., f;, ..., fs
source word

length of f

positioninf,j=1,2,...,]

the j-th word in f

empty cept on the source side

Appendix B: Using the IBM Models as Feature Functions

In this article, we use IBM Models 14 as feature functions by taking the logarithm of the
models themselves rather than the sub-models just for simplicity. It is easy to separate
each sub-model as a feature as suggested by Fraser and Marcu (2006). We distinguish

Yang Liu, Qun Liu, and Shouxun Lin. Discriminative Word Alignment by Linear Modeling.

Computational Linguistics. 2010.
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The whole process of finding fuzzy-matched word pairs
and computing their similarity is demonstrated in detail.
More importantly, the performance of BLEU is
significantly improved by integrating fuzzy matching.
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significantly improved by integrating fuzzy matching.

v

We demonstrate how to find fuzzy-matched word pairs
and compute their similarities in detail. More importantly,
integrating fuzzy matching significantly improved the
translation performance in terms of BLEU.
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their meanings, so it would be a useful constraint for rule
extraction and reduce the searching space.
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In this step, we want to induce an alignment between
words and predicates. The alignment can give a roughly
mapping between words and the predicates that express
their meanings, so it would be a useful constraint for rule
extraction and reduce the searching space.

v

This step induces an alignment between words and predicates.
Reflecting a rough mapping between natural languages and
logic, such alignments impose linguistically motivated

constraints on the search space and improve the efficiency of
rule extraction.
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/\1‘ —ammm{ZE a(f..e. )\ ))} (7)

AM
= algmln{z Z E(x (a(f.,es; A7), as.k)} (8)
AV Ls=1 k=1
where a(f.. e.: /\-‘1‘[ ) is the best candidate alignment produced by the linear model:
M
a(f,, e.: /\"1”_) = alcrma\{ Z Ao (fs, €4 a)} (9)
4 m=1

» The basic idea of MERT is to optimize only one parameter (i.e., feature weight)
each time and keep all other parameters fixed. This process runs iteratively over M

parameters until it cannot further reduce the loss on the training corpus.
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Jack (2010) argues that it is important to use syntax.

This algorithm proves to runs in approximately linear
time (Jack, 2010).
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The need to learn latent-variable models from
unlabeled data arises in many NLP problems.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic Models for
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empirical negative log-likelihood of the training data. As for the logistic ...
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