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Abstract
As a comprehensive indicator of mathematical thinking and
intelligence, the number sense (Dehaene 2011) bridges the in-
duction of symbolic concepts and the competence of problem-
solving. To endow such a crucial cognitive ability to machine
intelligence, we propose a dataset, Machine Number Sense
(MNS), consisting of visual arithmetic problems automatically
generated using a grammar model—And-Or Graph (AOG).
These visual arithmetic problems are in the form of geomet-
ric figures: each problem has a set of geometric shapes as its
context and embedded number symbols. Solving such prob-
lems is not trivial; the machine not only has to recognize the
number, but also to interpret the number with its contexts,
shapes, and relations (e.g., symmetry) together with proper
operations. We benchmark the MNS dataset using four pre-
dominant neural network models as baselines in this visual
reasoning task. Comprehensive experiments show that cur-
rent neural-network-based models still struggle to understand
number concepts and relational operations. We show that a
simple brute-force search algorithm could work out some of
the problems without context information. Crucially, taking
geometric context into account by an additional perception
module would provide a sharp performance gain with fewer
search steps. Altogether, we call for attention in fusing the
classic search-based algorithms with modern neural networks
to discover the essential number concepts in future research.

1 Introduction
Number is the ruler of forms and ideas, and the cause of
gods and demons.

— Pythagoras, c. 300 (Taylor 1818)
Mathematics is arguably the most elegant and vivid reflec-

tion of human intelligence, covering the areas of geometry,
arithmetic, algebra, and analysis (Simpson and Weiner 1989).
It is the science of logic reasoning, the discipline of abstract
forms, and the realm of symbolic languages. Among all the
mathematical symbols, numbers are the most familiar and
vital elements to us. Although the opinions of Pythagoras that
“all is number” are controversial and extreme, the significance
of the numbers can never be overestimated: people from all
walks of life embrace numbers every day.

Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dealing with numbers seems to be a simple task and an
innate competence: even newborn infants can discriminate
basic numerosities, expressing their surprise when the num-
ber of stimuli changes from two to three (Starkey and Cooper
1980). Meanwhile, processing numbers is also a painstaking
challenge and a learned skill; it always takes years of efforts
for students to practice calculations and more complicated
computations. Such a numerical competence is, in fact, very
unique; only few other animals possess similar capabilities
(and at a much smaller scale compared to human) (Davis
and Pérusse 1988; Gallistel 1989; 1990; Brannon and Ter-
race 1998; Dehaene, Dehaene-Lambertz, and Cohen 1998;
Cantlon and Brannon 2007; Jacob and Nieder 2008; Nieder
and Dehaene 2009). What is the underlying mechanism of
human numerical thinking and the concepts of number? And
how to endow a similar capability to machine intelligence?

The number sense (Dehaene 2011), a psychological termi-
nology, provides an explanation about the cognitive process
of numbers for both human and animals. It refers to the under-
standing of number concepts, the competence of numerical
operations (including counting, comparison, estimation, and
calculation), and the ability to flexibly solve mathematical
problems (Bobis 1996). People characteristic of good number
sense usually possess the abilities of fluent magnitude percep-
tion, reasonable result expectation, flexible mental compu-
tation, and appropriate presentation formulation (Kalchman,
Moss, and Case 2001). Below, we summarize four key obser-
vations from the vast body of literature on number sense.

Learned vs. Innate Number sense is developed in ac-
quired environments in addition to our innate capability.
Five-month-old infants have already possessed the capac-
ity to represent cardinality and can engage in rudimentary
arithmetics—basic addition and subtraction operations on
small sets of objects (Wynn 1992). Older children gradually
learn to establish the abstract connections between the mag-
nitude of the quantities and the symbolic expression of the
numbers, which are the foundation of further comparisons
and calculations (Temple and Posner 1998). Symbolic numer-
ical processing skills, different from the processing abilities
of countable non-symbolic objects, are more closely related
to mathematical competence (Schneider et al. 2017). As for
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Abstract

Dramatic progress has been witnessed in basic vision
tasks involving low-level perception, such as object recog-
nition, detection, and tracking. Unfortunately, there is still
an enormous performance gap between artificial vision sys-
tems and human intelligence in terms of higher-level vi-
sion problems, especially ones involving reasoning. Earlier
attempts in equipping machines with high-level reasoning
have hovered around Visual Question Answering (VQA),
one typical task associating vision and language under-
standing. In this work, we propose a new dataset, built in the
context of Raven’s Progressive Matrices (RPM) and aimed
at lifting machine intelligence by associating vision with
structural, relational, and analogical reasoning in a hierar-
chical representation. Unlike previous works in measuring
abstract reasoning using RPM, we establish a semantic link
between vision and reasoning by providing structure repre-
sentation. This addition enables a new type of abstract rea-
soning by jointly operating on the structure representation.
Machine reasoning ability using modern computer vision is
evaluated in this newly proposed dataset. Additionally, we
also provide human performance as a reference. Finally, we
show consistent improvement across all models by incorpo-
rating a simple neural module that combines visual under-
standing and structure reasoning.

1. Introduction
The study of vision must therefore include not
only the study of how to extract from images . . . ,
but also an inquiry into the nature of the internal
representations by which we capture this infor-
mation and thus make it available as a basis for
decisions about our thoughts and actions.

— David Marr, 1982 [35]

Computer vision has a wide spectrum of tasks. Some
computer vision problems are clearly purely visual, “cap-
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Figure 1. (a) An example RPM. One is asked to select an image
that best completes the problem matrix, following the structural
and analogical relations. Each image has an underlying structure.
(b) Specifically in this problem, it is an inside-outside structure
in which the outside component is a layout with a single centered
object and the inside component is a 2⇥ 2 grid layout. Details in
Figure 2. (c) lists the rules for (a). The compositional nature of the
rules makes this problem a difficult one. The correct answer is 7.

turing” the visual information process; for instance, filters
in early vision [5], primal sketch [13] as the intermediate
representation, and Gestalt laws [24] as the perceptual orga-
nization. In contrast, some other vision problems have triv-
ialized requirements for perceiving the image, but engage
more generalized problem-solving in terms of relational
and/or analogical visual reasoning [16]. In such cases, the
vision component becomes the “basis for decisions about
our thoughts and actions”.

Currently, the majority of the computer vision tasks fo-
cus on “capturing” the visual information process; few lines
of work focus on the later part—the relational and/or ana-
logical visual reasoning. One existing line of work in equip-
ping artificial systems with reasoning ability hovers around
Visual Question Answering (VQA) [2, 22, 48, 58, 62].
However, the reasoning skills required in VQA lie only
at the periphery of the cognitive ability test circle [7]. To
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Pyramid (with real-valued matching matrix) performs the
best by considering both interactions and semantic represen-
tations.

Contributions of this paper include: 1) a novel view of
text matching as image recognition; 2) the proposal of a new
deep architecture based on the matching matrix, which can
capture the rich matching patterns at different levels, from
words, phrases, to the whole sentences; 3) experimental
analysis on different tasks to demonstrate the superior power
of the proposed architecture against competitor matching al-
gorithms.

Motivation
It has been widely recognized that making a good match-
ing decision requires to take into account the rich interaction
structures in the text matching process, starting from the in-
teractions between words, to various matching patterns in
the phrases and the whole sentences. Taking the aforemen-
tioned two sentences as an example, the interaction struc-
tures are of different levels, as illustrated in Figure 1.

Figure 1: An example of interaction structures in paraphrase
identification.

Word Level Matching Signals refer to matchings be-
tween words in the two texts, including not only iden-
tical word matchings, such as “down–down”, “the–the”,
“ages–ages”, “noodles–noodles”, “and–and”,“dumplings–
dumplings” and “were–were”, but also similar word match-
ings, such as “famous–popular” and “chinese–china”.

Phrase Level Matching Signals refer to matchings be-
tween phrases, including n-gram and n-term. N-gram match-
ing occurs with n exactly matched successive words, e.g.
“(down the ages)–(down the ages)”. While n-term matching
allows for order or semantic alternatives, e.g. “(noodles and

dumplings)–(dumplings and noodles)”, and “(were famous

chinese food)–(were popular in china)”.
Sentence Level Matching Signals refer to matchings be-

tween sentences, which are composed of multiple lower
level matching signals, e.g. the three successive phrase level
matchings mentioned above. When we consider matchings
between paragraphs that contain multiple sentences, the
whole paragraph will be viewed as a long sentence and the
same composition strategy would generate paragraph level
matching signals.

To sum up, the interaction structures are compositional
hierarchies, in which higher level signals are obtained by
composing lower level ones. This is similar to image recog-
nition. In an image, raw pixels provide basic units of the
image, and each patch may contain some elementary visual
features such as oriented edges and corners. Local combina-
tions of edges form motifs, motifs assemble into parts, and
parts form objects. We give an example to show the relation-
ships between text matching and image recognition (Jia et al.
2014), as illustrated in Figure 2. In the area of image recog-
nition, CNN has been recognized as one the most successful

Figure 3: An overview of MatchPyramid on Text Matching.

way to capture different levels of patterns in image (Zeiler
and Fergus 2014). Therefore, it inspires us to transform text
matching to image recognition and employ CNN to solve it.
However, the representations of text and image are so dif-
ferent that it remains a challenging problem to perform such
transformation.

MatchPyramid
In this section we introduce a new deep architecture for
text matching, namely MatchPyramid. The main idea comes
from modeling text matching as image recognition, by tak-
ing the matching matrix as an image, as illustrated in Fig-
ure 3.

Matching Matrix: Bridging the Gap between Text
Matching and Image Recognition
As discussed before, one challenging problem by modeling
text matching as image recognition lies in the different rep-
resentations of text and image: the former are two 1D (one-
dimensional) word sequences while the latter is typically a
2D pixel grid. To address this issue, we represent the input
of text matching as a matching matrix M, with each ele-
ment Mij standing for the basic interaction, i.e. similarity
between word wi and vj (see Eq. 2). Here for convenience,
wi and vj denotes the i-th and j-th word in two texts re-
spectively, and ⌦ stands for a general operator to obtain the
similarity.

Mij = wi ⌦ vj . (2)
In this way, we can view the matching matrix M as an im-
age, where each entry (i.e. the similarity between two words)
stands for the corresponding pixel value. We can adopt dif-
ferent kinds of ⌦ to model the interactions between two

Pyramid (with real-valued matching matrix) performs the
best by considering both interactions and semantic represen-
tations.
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deep architecture based on the matching matrix, which can
capture the rich matching patterns at different levels, from
words, phrases, to the whole sentences; 3) experimental
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way to capture different levels of patterns in image (Zeiler
and Fergus 2014). Therefore, it inspires us to transform text
matching to image recognition and employ CNN to solve it.
However, the representations of text and image are so dif-
ferent that it remains a challenging problem to perform such
transformation.

MatchPyramid
In this section we introduce a new deep architecture for
text matching, namely MatchPyramid. The main idea comes
from modeling text matching as image recognition, by tak-
ing the matching matrix as an image, as illustrated in Fig-
ure 3.

Matching Matrix: Bridging the Gap between Text
Matching and Image Recognition
As discussed before, one challenging problem by modeling
text matching as image recognition lies in the different rep-
resentations of text and image: the former are two 1D (one-
dimensional) word sequences while the latter is typically a
2D pixel grid. To address this issue, we represent the input
of text matching as a matching matrix M, with each ele-
ment Mij standing for the basic interaction, i.e. similarity
between word wi and vj (see Eq. 2). Here for convenience,
wi and vj denotes the i-th and j-th word in two texts re-
spectively, and ⌦ stands for a general operator to obtain the
similarity.

Mij = wi ⌦ vj . (2)
In this way, we can view the matching matrix M as an im-
age, where each entry (i.e. the similarity between two words)
stands for the corresponding pixel value. We can adopt dif-
ferent kinds of ⌦ to model the interactions between two

Text Matching as Image Recognition, Liang Pang, Yanyan 
Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng, AAAI2016.
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Figure 2: Relationships between text matching and image recognition.

words, leading to different kinds of raw images. In this pa-
per, we give three examples as follows.

Indicator Function produces either 1 or 0 to indicate
whether two words are identical.

Mij = I{wi=vj} =

⇢
1, if wi = vj

0, otherwise.
(3)

One limitation of the indicator function is that it cannot
capture the semantic matching between similar words. To
tackle this problem, we define ⌦ based on word embed-
dings, which will make the matrix more flexible to capture
semantic interactions. Given the embedding of each word
~↵i = �(wi) and ~

�j = �(vj), which can be obtained by
recent Word2Vec (Mikolov et al. 2013) technique, we in-
troduce the other two operators: cosine and dot product.

Cosine views angles between word vectors as the similar-
ity, and it acts as a soft indicator function.

Mij =
~↵i

>
~

�j

k ~↵ik · k ~�jk
, (4)

where k · k stands for the norm of a vector, and `2 norm is
used in this paper.

Dot Product further considers the norm of word vectors,
as compared to cosine.

Mij = ~↵i
>
~

�j . (5)

Based on these three different operators, the matching ma-
trices of the given example are shown in Fig 4. Obviously
we can see that Fig 4(a) corresponds to a binary image, and
Fig 4(b) correspond to gray images.

Hierarchical Convolution: A Way to Capture Rich
Matching Patterns
The body of MatchPyramid is a typical convolutional neu-
ral network, which can extract different levels of matching
patterns. For the first layer of CNN, the k-th kernel w(1,k)

scans over the whole matching matrix z(0)=M to generate
a feature map z(1,k):

z(1,k)i,j = �

✓rk�1X

s=0

rk�1X

t=0

w(1,k)
s,t · z(0)i+s,j+t + b

(1,k)

◆
, (6)

(a) Indicator (b) Dot Product

Figure 4: Three different matching matrices, where solid cir-
cles elements are all valued 0.

where rk denotes the size of the k-th kernel. In this paper
we use square kernel, and ReLU (Dahl, Sainath, and Hinton
2013) is adopted as the active function �.

Dynamic pooling strategy (Socher et al. 2011) is then
used to deal with the text length variability. By applying dy-
namic pooling, we will get fixed-size feature maps:

z(2,k)i,j = max

0s<dk

max

0t<d0
k

z(1,k)i·dk+s,j·d0
k+t, (7)

where dk and d

0
k denote the width and length of the corre-

sponding pooling kernel, which are determined by the text
lengths n and m, and output feature map size n

0 ⇥ m

0,
i.e. dk = dn/n0e, d0k = dm/m

0e.
After the first convolution and dynamic pooling, we con-

tinue to obtain higher level features z(l), l � 2 by further
convolution and max-pooling, with general formulations:

z(l+1,k0)
i,j =�

✓cl�1X

k=0

rk�1X

s=0

rk�1X

t=0

w(l+1,k0)
s,t ·z(l,k)i+s,j+t+b

(l+1,k)

◆
,

l = 2, 4, 6, . . . ,

(8)
z(l+1,k)
i,j = max

0s<dk

max

0t<dk

z(l,k)i·dk+s,j·dk+t,

l = 3, 5, 7, . . . ,

(9)

where cl denote the number of feature maps in the l-th layer.
Analysis of Hierarchical Convolution

Text Matching as Image Recognition, Liang Pang, Yanyan 
Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng, AAAI2016.
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Why is this a cardinal, but not a scarlet tanager?

Counter-Class: Scarlet Tanager

Explanation 
Generator

This is a Scarlet Tanager 
because it is a red bird with a 
pointy beak and black eyes.
…
This is a Scarlet Tanager 
because it is a red bird with 
black wings and a pointy beak.

Predict Candidate Counterfactual Evidence

Evidence Checker

Attribute Score
red bird 0.94
pointy beak 0.87
black eyes 0.92
black wings 0.12

Evidence Checker

Counterfactual Explanation Generator

It is not a Scarlet Tanager because it does not 
have black wings.

Figure 1. Outline of our counterfactual explanation pipeline. We
first predict candidate counterfactual evidence, then determine if
counterfactual evidence is in the image, then finally generates a
cohesive sentence which mentions the counterfactual evidence
which cannot be found in the image.

erate counterfactual explanations which detail why image
does not belong to the counter-class.

Figure 1 outlines our approach for generating textual coun-
terfactual explanations. First, we use an explanation model
to predict candidate counterfactual evidence, or evidence
which is discriminative for a counter-class. We then ver-
ify if counterfactual evidence is in a given image using an
evidence checker. Since we only have access to sentences
which describe what is in an image, to generate counterfac-
tual explanations, we negate phrases which do not appear in
the image to generate a cohesive counterfactual explanation.
Below we detail how we perform each of these steps.

2.1. Determining Candidate Counterfactual Evidence

We first predict candidate counterfactual evidence given a
counter-class. To determine candidate counterfactaul evi-
dence, we rely on the explanation model proposed in (Hen-
dricks et al., 2016). For a specific counter-class, we de-
termine discriminative phrases by extracting noun phrases
from generated explanations for images in the counter-class
using a rule-based noun phrase chunker. We consider all
noun phrases present in explanations for the counter-class
as candidate counterfactual evidence.

2.2. Evidence Checker

Once candidate counterfactual evidence has been extracted,
we verify which counterfactual evidence is not present in
the image using an evidence checker. Candidate counter-
factual evidence which is not present in the image can be
considered counterfactual evidence and is used to generate

our counterfactual explanations. Unfortunately, we do not
have access to groundtruth counterfactual evidence. Instead
we must rely on human descriptions of images, which in-
dicate which attributes are in an image. To learn how to
determine whether counterfactual evidence is in an image,
following (Hendricks et al., 2017), we instead mine nega-
tive attributes by relying on the intuition that most visual
attributes are exclusive, e.g., if an eye is a red eye, it cannot
also be a black eye. By considering such “flipped” attributes,
we can build a set of attributes which appear in an image
and a set of attributes which do not appear in an image.

We explore two evidence checker models: the first resem-
bles a classifier model and takes an image and phrase as
input and outputs a binary label indicating whether a phrase
corresponds to the image (Counterfactual: Classifier or
CF: Classifier) and the second is the phrase-critic archi-
tecture proposed in (Hendricks et al., 2017) (Counterfactual:
Phrase-Critic or CF: Phrase-Critic).

Counterfactual: Classifier. The Counterfactual: Classi-
fier first extracts visual features and textual features, then
combines visual and textual features using elementwise mul-
tiplication. We extract conv5 from the model trained for
fine-grained bird classification detailed in (Hendricks et al.,
2016) and text features using an LSTM. Following (Park
et al., 2018), we combine vision and text modalities using
elementwise multiplication and L2 normalization. Once
combining language and visual features, we apply a fully
connected layer which predicts a score indicating whether or
not a phrase is in the image (a score close to 0 indicates the
phrase is not in an image and a score close 1 indicates the
phrase is in an image). Given a set of candidate counterfac-
tual evidence, we determine which counterfactual evidence
to discuss in our counterfacatul explanation by selecting the
evidence with the minimum score.

Counterfactual: Phrase-Critic. As an alternative to sim-
ply classifying if a noun phrase applies to an image, we con-
sider grounding, or localizing, natural language phrases in
an image. However, collecting bounding box annotations for
natural language phrases can be difficult and the dataset we
consider in this work does not have ground truth bounding
box annotations. Thus, following (Hendricks et al., 2017),
we employ an out-of-the-box grounding model, specifically
the baseline grounding model from (Hu et al., 2017) which
is trained on the Visual Genome dataset (Krishna et al.,
2017). As documented by (Hendricks et al., 2017), employ-
ing out-of-the-box grounding models can be challenging
because scores are not normalized to our dataset. We thus
train a phrase-critic model which takes as input an explana-
tion and predicts a score indicating how well the explanation
is grounded in the image, using the original sentence as a
positive example and an example with “flipped” attributes as
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ABSTRACT
In this paper, we propose a novel top-k learning to rank
framework, which involves labeling strategy, ranking model
and evaluation measure. The motivation comes from the dif-
ficulty in obtaining reliable relevance judgments from human
assessors when applying learning to rank in real search sys-
tems. The traditional absolute relevance judgment method
is difficult in both gradation specification and human assess-
ing, resulting in high level of disagreement on judgments.
While the pairwise preference judgment, as a good alter-
native, is often criticized for increasing the complexity of
judgment from O(n) to O(n log n). Considering the fact
that users mainly care about top ranked search results, we
propose a novel top-k labeling strategy which adopts the
pairwise preference judgment to generate the top k order-
ing items from n documents (i.e. top-k ground-truth) in a
manner similar to that of HeapSort. As a result, the com-
plexity of judgment is reduced to O(n log k). With the top-
k ground-truth, traditional ranking models (e.g. pairwise or
listwise models) and evaluation measures (e.g. NDCG) no
longer fit the data set. Therefore, we introduce a new rank-
ing model, namely FocusedRank, which fully captures the
characteristics of the top-k ground-truth. We also extend
the widely used evaluation measures NDCG and ERR to be
applicable to the top-k ground-truth, referred as κ-NDCG
and κ-ERR, respectively. Finally, we conduct extensive ex-
periments on benchmark data collections to demonstrate the
efficiency and effectiveness of our top-k labeling strategy and
ranking models.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Learning to Rank, Top-k, Preference Judgment, Evaluation

1. INTRODUCTION
In the past few years, learning to rank has been widely rec-

ognized as an important technique for information retrieval
(IR). A vital part to employ learning to rank in real search
systems is the acquisition of reliable and high quality labeled
datasets, both for training and evaluation. In traditional IR
literature, assessors are requested to determine the relevance
of a document under some pre-defined gradations, which is
called absolute relevance judgment method. However, there
are some significant drawbacks for this evaluation process.
Firstly, the specifics of the gradations (i.e. how many grades
to use and what those grades mean) must be defined, and it
is not clear how these choices will affect relative performance
measurements [26]. Secondly, the assessing burden increases
with the complexity of the relevance gradations; the choice
of label is not clear when there are more factors to consider,
leading to high level of disagreement on judgments [4].

Recently pairwise preference judgment has been investi-
gated as a good alternative [20, 26]. Instead of assigning
a relevance grade to a document, an assessor looks at two
pages and judges which one is better. Compared with ab-
solute relevance judgment, the advantages lie in that: (1)
There is no need to determine the gradation specifications
as it is a binary decision. (2) It is easier for an assessor to ex-
press a preference for one document over the other than to
assign a pre-defined grade to each of them [7]. (3) Most
state-of-the-art learning to rank models, pairwise or list-
wise, are trained over preferences. As noted by Carterette et
al. [7], “by collecting preferences directly, some of the noise
associated with difficulty in distinguishing between differ-
ent levels of relevance may be reduced.” Although prefer-
ence judgment likely produce more reliable labeled data, it
is often criticized for increasing the complexity of judgment
(e.g. from O(n) to O(n log n) [20]), which poses a big chal-
lenge in wide use. Do we actually need to judge so many
pairs for real search systems? If not, which pairs do we
choose? How to choose? These questions become the origi-
nal motivation of this paper.

As we know, in real Web search scenario, it is well ac-
cepted that users mainly care about the top results [30]. In
other words, the ordering of the top results (typically the
results on the first one or two pages) is critical for users’
search experience. It indicates that a labeling strategy shall
take effort to figure out the top results and judge the prefer-
ence orders among them, but pay less attention to the exact
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“Think like a man of action, act like a man of 
thought.” 


