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Review of A* Algorithm. In the literature [10], A* search algo-
rithm is widely used in pathfinding and graph traversal due to its
performance and accuracy. Starting from a source node of a graph,
it aims to find a path to the given destination node resulting in
the smallest cost. It maintains a tree of paths originating at the
source node and extending those paths one edge at a time until its
termination criterion is satisfied. At each extension, A* evaluates a
candidate node n based on a cost function f(n)

-
I f(n) = g(n) + h(n), | (2)

where g(n) is the cost of the path from the source to n (we call it
observable cost since the path is observable), and h(n) is an estimate
of the cost required to extend the future path to the goal (we call it
estimated cost since the actual optimal path is unknown). The key
part of A* is the setting of the heuristic function h(-), which has an
important impact on the final performance.

Observed Sub -Trajectory Next Location  Unobserved Sub-Trajectory

Source | | Destination

.
(1] (4] [2] [1a] - L i it g3 [

[ Inter-trajectory ATT

Vi a
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: U U U U

1
User History Trajectories  Current Sub-Trajectory
!
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v 01,14
h I)ntunu from I, to I,
/
/ \ 1

Figure 1: The overall architecture of the NASR model. g(-)
learns the cost from the source to a candidate location, called
observable cost; h(-) predicts the estimated cost from a candi-
date location to the destination, called estimated cost.
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With the popularization of GPS-enabled mobile devices, a huge
volume of trajectory data from users has become available in a va-
riety of domains [27-29]. Personalized Route Recommendation (PRR)
is one of the core functions in many online location-based appli-
cations, e.g., online map. Given the road network, PRR aims to
generate user-specific route suggestions on instant queries about
the path planing from a source to a destination [6, 7]. It is challeng-
ing to perform effective pathfinding in a large and complex road
network. For accurate route recommendation, it is necessary to con-
sider rich context information, including personalized preference,
spatial-temporal influence and road network constraint.
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Early studies cast the route recommendation task as a pathfind-
ing problem on graphs [17, 30]. These methods mainly focus on
how to extend existing search algorithms (e.g., Dijkstra shortest
path algorithms and A* search algorithm) for the studied task. With
suitable heuristics, they can substantially reduce the search space
and obtain high-quality responses. The key of heuristic search al-
gorithms is to develop an effective cost function. Most of previous
studies heuristically set the cost function, making their applicabil-
ity highly limited. In addition, it is difficult to utilize various kinds
of context information in the search process. To construct more
flexible approaches, many studies have utilized machine learning
methods for solving the PRR task [4, 32]. These methods are able
to characterize the location dependencies or spatial-temporal infor-
mation with principled models. While, most of them are shallow
computational models, and may have difficulties in capturing com-
plex trajectory patterns. With the revival of deep learning, it sheds
light on the development of more effective PRR models using neural
networks. Especially, sequential neural models, i.e., Recurrent Neu-
ral Networks (RNN), have been widely used for modeling sequential
trajectory data [1, 31, 34]. However, to our knowledge, these models
mainly focus on one-step or short-term location prediction, which
may not be suitable for the PRR task.
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Comparing the above approaches, we can see they have their
own merits for the PRR task. On one hand, in terms of the problem

setting, heuristic search algorithms are specially suitable for the
PRR task, which can be considered as a pathfinding problem on
graphs given the source and destination. They are able to generate
high-quality approximate solutions using elaborate heuristics. On
the other hand, as a newly emerging direction of machine learning,
deep learning methods are effective to capture the complex data
characteristics using learnable neural networks. They are able to
learn effective mapping mechanisms from input to output or ex-
pressive feature representations from raw data in an automatic way.
For developing a more effective PRR method, is there a principled
way to combine the merits of both kinds of approaches?

Inspired by recent progress of deep learning in strategy-based
games (e.g., Go and Atari) [18, 23] , we propose to improve search
algorithms with neural networks for solving the PRR task. Espe-
cially, we adopt the A* algorithm [10] as the base search algorithm,
since it has been widely used in pathfinding and graph traversal.
Previous studies have also shown that A* algorithm is a promising
approach to solving the route recommendation task [11, 20, 30].
The main idea of our solution is to automatically learn the cost
functions in A* algorithms, which is the key of heuristic search
algorithms. For this purpose, there are three important issues to
consider. First, we need to define a suitable form for the cost in
the PRR task. Different from traditional graph search problems,
a simple heuristic form can not directly optimize the goal of our
task [11, 30], e.g., the route based on the shortest distance may not
meet the personalized needs of a specific user. Second, we need
to design effective models for implementing cost functions with
different purposes, and unify different cost functions for deriving
the final cost. The entire cost function f(-) of A* can be decomposed
into two parts, i.e, f(-) = g(-) + h(-). The two parts compute the
observable cost from the source node to the evaluation node and
the estimated cost from the evaluation node to the destination node
respectively. Intuitively, the two parts require different modeling
methods, and need to jointly work to compute the entire cost. Third,
we need to utilize rich context or constraint information for improv-
ing the task performance. For example, spatial-temporal influence
and road networks are important to consider in modeling trajectory
patterns, and should be utilized to develop the cost functions.
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To address these difficulties, we propose a novel neuralized A*
search algorithm for solving the PRR task. To define a suitable form
for the search cost, we formulate the PRR task as a conditional
probability ranking problem, and compute the cost by summing
the negative log of conditional probabilities for each trajectory
point in a candidate trajectory. We use this form of cost to instruct
the learning of the two cost functions in A* algorithm, namely
g(-) and h(-). For implementing g(-), we propose to use attention-
based RNNs to model the trajectory from the source location to the
candidate location. We incorporate useful context information to
better capture sequential trajectory behaviors, including spatial-
temporal information, personalized preference and road network
constraint. Instead of simply computing a single cost, our model
also learns a time-varying vectorized representation for the moving
state of a user. For learning h(-), we propose to use a value network
for estimating the cost for unobserved part of a trajectory. In order
to capture the complex characteristics of road networks, we build
the value network on top of improved graph attention networks
by incorporating useful context information. In these two different
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To the best of our knowledge, we are the first to use neural net-
works for improving A* algorithm in the PRR task. Our approach is
able to automatically learn the cost functions without handcrafting
heuristics. It is able to effectively utilize context information and
characterize complex trajectory characteristics, which elegantly
combines the merits of A* search algorithms and deep learning.
The two components are integrated in a joint model for deriving
the evaluation cost. Extensive results on the three datasets have
shown the effectiveness and robustness of the proposed model.
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2 RELATED WORK

Our work is related to the following research directions. improving the tasks that require complicated solving strategies, in-
Route Recommendation. With the availability of user-generated Cluding the Go game [23] and Atari games [18]- Our work is hlghly
trajectory information, route recommendation has received much inspired by these pioneering works, but have a quite different focus

attention from the research community [6, 7, 11], which aims to on the studied task, i.e., personalized route recommendation. Our
generate reachable paths between the source and destination loca-

tions. The task can be defined as either personalized [6, 7] o non- task itself involves specific research challenges that make the reuse

personalized [4, 11, 17, 35], and constructed based on different types of previous works impossible.
of trajectory data, e.g., GPS data [35] or POI check-in data [3, 22].
In the literature, various methods have been developed for route
recommendation, including graph search algorithms [4, 15, 30],
time-sensitive algorithms [17], A* search algorithm [11], Gotopage 9
bilistic POI transition/ranking models [3] and diver-direction based
methods [35]. Overall, most of the studies focus on using search
based algorithms or probabilistic models by considering additional
constraints, e.g., road networks or time. Our work is built on top
of search based solutions, and the novelty lies in the automatic
learning of the cost functions using neural networks. Our model is
flexible to incorporate rich context or constraint information.

Deep Learning for Trajectory Data Mining. Recent years have
witnessed the success of deep learning in modeling complex data
relations or characteristics. In specific, Recurrent Neural Network
(RNN) together with its variant Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) have been widely used for model-
ing sequential trajectory data. Typical works include hierarchical
RNN [36], RNN with road network constraints [31], and multi-
modal embedding RNN [9], spatial-temporal RNN [16] and space
time feature-based RNN [1]. These studies mainly focus on short-
term trajectory behaviors, e.g., one-step location recommenda-
tion [16], which are not suitable for solving the current task.

Machine Learning for Heuristic Search. These studies in this
direction aim to automatically improve or optimize the search al-
gorithms with machine learning methods. Early works include the
use of machine learning in creating effective, likely-admissible or
improved heuristics [8, 13, 21]. More recently, deep learning has sig-
mﬁcantly pushed forward the research of this line. The main idea is

£ LI E i c 1 . e
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Route Recommendation. With the availability of user-generated
trajectory information, route recommendation has received much
attention from the research community [6, 7, 11], which aims to
generate reachable paths between the source and destination loca-
tions. The task can be defined as either personalized [6, 7] or non-
personalized [4, 11, 17, 35], and constructed based on different types
of trajectory data, e.g., GPS data [35] or POI check-in data [3, 22].
In the literature, various methods have been developed for route
recommendation, including graph search algorithms [4, 15, 30],
time-sensitive algorithms [17], A* search algorithm [11], proba-
bilistic POI transition/ranking models [3] and diver-direction based
methods [35]. Overall, most of the studies focus on using search
based algorithms or probabilistic models by considering additional
constraints, e.g., road networks or time. Our work is built on top
of search based solutions, and the novelty lies in the automatic
learning of the cost functions using neural networks. Our model is
flexible to incorporate rich context or constraint information.
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Route Recommendation. With the availability of user-generated
trajectory information, route recommendation has received much
attention from the research community [6, 7, 11], which aims to
generate reachable paths between the source and destination loca-
tions. The task can be defined as either personalized [6, 7] or non-
personalized [4, 11, 17, 35], and constructed based on different types
of trajectory data, e.g., GPS data [35] or POI check-in data [3, 22].
In the literature, various methods have been developed for route
recommendation, including graph search algorithms [4, 15, 30],
time-sensitive algorithms [17], A" search algorithm [11], proba-
bilistic POI transition/ranking models [3] and diver-direction based
methods [35]. Overall, most of the studies focus on using search
based algorithms or probabilistic models by considering additional
constraints, e.g., road networks or time. Our work is built on top
of search based solutions, and the novelty lies in the automatic
learning of the cost functions using neural networks. Our model is
flexible to incorporate rich context or constraint information.



# # TA4E(Related work) 5

* REAYIZH]
- %5

Route Recommendation Algorithms. With the availabil-
ity of user-generated trajectory information, route recom-
mendation has received much attention from the research
community [4], [5], [16], which aims to generate reachable
paths between the source and destination locations. The task
can be defined as either personalized [4], [5], [17] or non-
personalized [7], [9], [16], [18], [19], and constructed based on
different types of trajectory data, e.g., GPS data [19] or POI
check-in data [20], [21]. In the literature, various algorithms
have been developed for route recommendation. Wei et
al. [6], [9], [22] utilized graph search algorithms for identify-
ing the path over the road network; Luo et al. [7] proposed
time-sensitive algorithms to find the most frequent path
in a specific time period; Kanoulas et al. [16] proposed a

4
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e In-text citations include the surname of the author and date, either both inside
parentheses or with the author names in running text and the date in
parentheses. For example:

“Recently, Johnson (2014) has shown that” or
“This has recently been shown (Johnson, 2014)”

e If there are two authors, name both:

“This method was developed by Johnson and Smith (2012)"

o If there are more than two authors, use the et al. (et alii; "and others")
convention:

“This was based on a method introduced by Smith et al. (2002)”

e If more than one references are cited at one location in the text, order them
chronologically in the running text separated by a comma:

“this was discussed by Smith et al. (2002), Johnson and Smith (2012), and
Johnson (2014)”

or order them between brackets separated using a semicolon:

“...has widely been recognised (Smith et al., 2002; Johnson and Smith, 2012;
Johnson, 2014)”

e For citations of multiple works by the same authors in the same year, add
lowercase letters (a, b, c, ...) after the year. The name or names of the authors
do not needed to be repeated, for example:

“This method has been extensively applied (e.g., Murphy and Wong, 2014a,
2014b; Wong, 2014)"

e In the unlikely case, it was impossible to trace the original publication, refer to
both the original work and the work it was cited in, for example:
“According to Peterson (1873), cited by Vanderkeelen (1999)"

A guide for scientific writing

Bachelor Earth Sciences



E S 4 (Definition) 5 7%

o &350 BIE
— IBAFEPTR K&
— 2 B R A5 89 A LA R AE R T A
— % KA KRG R F #AE 5



h)

2 i

In our task, we assume road network information is available
for the pathfinding task, which is the foundation of the traffic
communication for users.

DEFINITION 1. Road Network. A road network is a directed graph
G = (L, E), where L is a vertex set of locations and & C L X L isan
edge set of road segments. A vertexl; € L (i.e., a location) represents
a road junction or a road end. An edge e, |, = (li,l;) € & represents
a directed road segment from vertex l; to vertex ;.

DEFINITION 2. Route. A route (a.k.a., a path) p is an ordered
sequence of locations connecting the source location ls with the desti-
nation location l; with m intermediate locations, i.e,p:lg — I} —

. = Im — 1, where each pair of consecutive locations (l;i,li+1)
corresponds to a road segment ey, ;. . in the road network.

The moving trajectory of a user on the road network can be
recorded using GPS-enabled devices. Due to instrumental inaccura-
cies, the sampled trajectory points may not be well aligned with
the locations in L. Following [33], we can preform the procedure
of map matching for aligning trajectory points with locations in L.

DEFINITION 3. Trajectory. A trajectory t is a time-ordered se-
quence of m locations (after map matching) generated by a user, i.e.,
t:{l1,by) = (l2,b2) — ... > (I, bm), where b; is the visit times-
tamp for location I;.

E 2R 4 (Definition) 5

4
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— http://www.deeplearningbook.org/contents/notation.html

Numbers and Arrays

Identity matrix with n rows and n columns

Identity matrix with dimensionality implied by

0,1,0,...,0] with a

A square, diagonal matrix with diagonal entries

a A scalar (integer or real)
a A vector
A A matrix
A A tensor
I,
I
context
el Standard basis vector [0,...,
1 at position %
diag(a)
given by a
a A scalar random variable
a A vector-valued random variable

A matrix-valued random variable
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Sets and Graphs
A A set

R The set of real numbers
{0,1} The set containing 0 and 1

{0,1,...,n} The set of all integers between 0 and n

[a, b] The real interval including a and b
(a, b] The real interval excluding a but including b
A\B Set subtraction, i.e., the set containing the ele-
ments of A that are not in B
g A graph

Pag(x;) The parents of x; in G
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Indexing

Element 7 of vector a, with indexing starting at 1
All elements of vector a except for element 7
Element ¢, j of matrix A

Row 7 of matrix A

Column ¢ of matrix A

Element (¢, j, k) of a 3-D tensor A

2-D slice of a 3-D tensor

Element ¢ of the random vector a
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Linear Algebra Operations

Transpose of matrix A
Moore-Penrose pseudoinverse of A
Element-wise (Hadamard) product of A and B

Determinant of A
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dy
dz
dy
Oz
Vay
Vxy

Vxy
of
ox
93) or H(f)(z)

Calculus
Derivative of y with respect to x

Partial derivative of y with respect to x
Gradient of y with respect to x

Matrix derivatives of y with respect to X

Tensor containing derivatives of y with respect to
X

Jacobian matrix J € R™*" of f : R® — R™
The Hessian matrix of f at input point

Definite integral over the entire domain of x

Definite integral with respect to @ over the set S
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Probability and Information Theory

alb The random variables a and b are independent
alb|c They are conditionally independent given c
P(a) A probability distribution over a discrete variable
p(a) A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified
a~P Random variable a has distribution P

Ex~p[f(z)] or Ef(z) Expectation of f(x) with respect to P(x)
Var(f(x)) Variance of f(z) under P(x)
Cov(f(z),g(x)) Covariance of f(z) and g(z) under P(x)

H(x) Shannon entropy of the random variable x
Dx1(P| Q) Kullback-Leibler divergence of P and Q
N(z; p, X) Gaussian distribution over  with mean p and

covariance X



E LSR5~ (Definition) 5 7%

¢« — A Notation®y & &K

— http://www.deeplearningbook.org/contents/notation.html

f:A—>B
fog
f(z;0)

1 condition

Functions
The function f with domain A and range B

Composition of the functions f and g

A function of x parametrized by 8. (Sometimes
we write f(z) and omit the argument @ to lighten
notation)

Natural logarithm of z
1

1 + exp(—z)
Softplus, log(1 + exp(z))

Logistic sigmoid,

LP norm of
L2 norm of x
Positive part of z, i.e., max(0, z)

is 1 if the condition is true, 0 otherwise
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Datasets and Distributions
Pdata The data generating distribution

Pdata The empirical distribution defined by the training

set
X A set of training examples
z® The i-th example (input) from a dataset
y(i) or y(i) The target associated with (¥ for supervised learn-
ing
X The m x n matrix with input example z® in row

-Xi,:
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DEFINITION 1. Road Network. A road network is a directed graph
G = (L, E), where L is a vertex set of locations and & C L X L isan
edge set of road segments. A vertexl; € L (i.e., a location) represents
a road junction or a road end. An edge el = (li,1j) € & represents
a directed road segment from vertex l; to vertex l;.

DEFINITION 2. Route. A route (a.k.a., a path) p is an ordered
sequence of locations connecting the source location ls with the desti-
nation location l; with m intermediate locations, i.e,p : ls — [} —

. — Ly — 1y, where each pair of consecutive locations (l;, li+1)
corresponds to a road segment ej. . . in the road network.
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We first introduce the notations used throughout the paper. In a
recommender system (RS), let U denote a set of users and 7 denote
a set of items. Our task focuses on the recommendation scenario
with implicit feedback [25, 26], where we only concern whether
a user u € U has interacted with an item i € 7 at time t. By
sorting the interaction records by time ascendingly, we can form

the interaction sequence for user u, namely {iiu), RN iﬁu) e ’(u)},

s sln,
where igu) is the item that u has interacted with at time ¢t and n,, is
the length of interaction records for user u. Following [26], we use
the relative time index instead of absolute time index for numbering
interaction records.

Given the interaction sequence {iy,- - , i }1 of user u, our GRU-
based recommender computes the current hidden state vector hY €

RLH conditioned on previous hidden state vector hY_, as below

¢ = GRU(h}_,,qi,;©), (1)

where GRU(-) is the GRU unit [4], q;, is the embedding vector for
item iz, and © denotes all the related parameters of GRU networks.
The embedding vector q;, € REH s called item embedding, which
can be fixed or learned. In this way, the predictor encodes the
interaction sequence of u into a hidden vector h¥, which models
the sequential preference of u at time ¢. Hence, we call h}' sequential
preference representation of user u.
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5 THE NASR MODEL

In the section, we present the proposed Neuralized A-Star based
personalized route Recommendation (NASR) model.

5.1 Model Overview

Our model is developed based on the general A* algorithm frame-
work. For node evaluation, we decompose the entire cost function

£(.\ intn tara narte namalyr nheorvunhlo ract and octimatod ract whicrh

5.3 Modeling the Estimated Cost with Value
Networks

Besides the observable cost, we need to learn the estimated cost
from a candidate location to the destination. Specially, we introduce
a value network to implement A(-). This part is more difficult to
model since no explicit trajectory information is observed. In order
to better utilize the road network information for estimation, we
build the value network on top of an improved graph attention
network with useful context information.

5.2 Modeling the Observable Cost with RNN

This part studies the learning of function g(-) for observable
cost. Given an observed sub-route Iy — [; — -+ — [;, as
shown in Eq. (4), the problem becomes how to effectively learn the
conditional transition probabilities Pr(l|ls — I, q, u). Simple
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4 THE PROPOSED APPROACH

In this section, we present the knowledge-enhanced sequential
recommender. We start with a base sequential recommender using
GRU networks, and then augment the base model with Key-Value
Memory Networks using entity attribute information from KBs.

4.1 A GRU-based Sequential Recommender

Recurrent Neural Networks (RNN) have been shown effective in
capturing and characterizing the temporal dependency in sequence
data. A major problem of RNNs is that it suffers from the prob-

4.2 Augmenting Sequential Recommender
with Knowledge-Enhanced Memory
Networks

The GRU-based recommender encodes the user preference into a
latent vector, which is less powerful to capture fine-grained pref-
erence over attribute or feature dimensions of items. Knowing
detailed user interests in the attribute level is particularly useful to
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Figure 1: The overall architecture of the NASR model. g(-)
learns the cost from the source to a candidate location, called
observable cost; h(-) predicts the estimated cost from a candi-
date location to the destination, called estimated cost.
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5.4 Model Analysis and Learning

Integrating the two components in Section 5.2 and 5.3, we ob-
tain the complete NASR model for the PRR task. NASR follows the
similar search procedure of A* algorithm but uses the learned cost
for node evaluation.Specially, it has fulfilled the cost functions of
A* algorithms with neural networks, namely ¢(-) and A(-). Given a
candidate location, the first component utilizes RNNs to character-
ize the currently generated sub-trajectory for learning observable
cost, while the second component incorporates a value network
to predict the estimated cost to arrive at the destination. Finally,
the two cost values are summed as the final evaluation cost of a
candidate location.

Compared with traditional heuristic search algorithms, NASR
has the following merits. First, it does not require to manually set
functions with heuristics, but automatically learns the functions
from data. Second, it can utilize various kinds of context information

5
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We present a diagram sketch of our model in Fig. 2. We call our
model Knowledge-enhanced Sequential Recommender (KSR). Our
model has the following merits. First, the GRU network is able to
effectively capture temporal dependency, yielding a sequential rep-
resentation for user preference (i.e., h';). Second, the KV-MN part is
able to characterize the detailed user interests over item attributes,
yielding an attribute-based representation for user preference (i.e.,
m}). Third, the hidden sequential preference representation (i.e.,
hY) is used to dynamically generate a set of attention weights (i.e.,
wt,u.a) Over the explicit attributes, which provides the capacity
of explaining the latent sequential preference in the attribute lev-
el. Putting all together, our model is endowed with the benefits
from both GRU and KV-MN, and further enhanced with external
structured knowledge information. Hence, our model is expected
to be more powerful in sequential recommendation, effective and
interpretable.
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Construction of the Datasets. In our task, we need to prepare
both KB and RS data. For KB data, we adopt the one-time FREE-
BASE [8] dump consisting of 63 million triples. For RS data, we
use four datasets from different domains, namely LAST.FM mu-
sic [28], MoviELENS ml-20m [9], MoVIELENS ml-1m [9] and Ama-
zON book [11]. The LasT.Fm music dataset is very large, and we take
the subset from the last year; for the ml-20m dataset, we take the
subset from year 2005 to 2015. Following [10, 26], we only keep the
k-core dataset, and filter unpopular items and inactive users with
fewer than k records, which is set to 3 in book dataset and 10 for the
other datasets. Then, we link filtered items with FREEBASE entities.
With an offline FREEBASE search API, we retrieve KB entities with
item title (e.g., song titles) as queries. Once mulitple entities are
returned, we further incorporate at least one attribute as the filter
to identify the only correct entity. We only keep the interactions
related to the linked items in the final datasets. We group the in-
teraction records by users, sort them according to the timestamps
ascendingly, and form the interaction sequence for each user. To
train TRANSE, we start with linked entities as seeds and expand the
graph with one-step search. Not all the relations in KBs are useful,
we remove unfrequent relations with fewer than 5,000 triples. We
summarize the detailed statistics of the datasets in Table 1.

(Method) 5 /%

Table 1: Statistics of our datasets. #Entities indicates the
number of entities that are extended by seed entities with
one-step search in KBs for training TRANSE.

Datasets  #Interactions #LinkedItems #Users #Entities #Relations

Music 203,975 30,658 7,694 214,524 19
ml-20m 5,868,015 19,533 61,583 1,125,100 81
ml-1m 916,714 3,210 6,040 1,125,100 81
Book 828,560 69,975 65,125 313,956 49

#ﬂi/}ﬁﬁi
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Evaluation Metrics. For the PRR task, we adopt a variety of eval-
uation metrics widely used in previous works [6, 12, 14]. Given an
actual route p, we predict a possible route p” with the same source
and destination. Following [6, 14], we use Precision, Recall and F1-

score as evaluation metrics: Precision = lpop’] ,Recall = Iy’ and

T el
F1= z;i;R Precision and Recall compute the ratios of overlapping

locations w.r.t. the actual and predicted routes respectively. Besides,
we use the Edit distance as a fourth measure [12], which is the
minimum number of edit operations required to transform the pre-
dicted route into the actual route. Note the source and destination

locations are excluded in computing evaluation metrics.

Task Setting. For each user, we divide her/his trajectories into
three parts with a ratio of 7 : 1: 2, namely training set, validation
set and test set. We train the model with training set, and optimize
the model with validation set. Instead of reporting the overall per-
formance on all test trajectories, we generate three types of queries
w.r.t. the number of locations in the trajectories, namely short (10
to 20 locations), medium (20 to 30 locations) and long (more than
30 locations). In test set, given a trajectory, the first and last loca-
tions are treated as the source and destination respectively, and the

— AL S0 TR F5 AR T AL
‘%&X%ﬁW%ﬁTu/m, Bt dn Sk 48 = 9]
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Methods to Compare. We consider the following comparisons:

+RICK [30]: It builds a routable graph from uncertain trajecto-
ries, and then answers a users online query (a sequence of point
locations) by searching top-k routes on the graph.

«MPR [4]: Tt discovers the most popular route from a transfer net-
work based on the popularity indicators in a breadth-first manner.

«CTRR [6]: It proposes collaborative travel route recommenda-
tion by considering user’s personal travel preference.

«STRNN [16]: Based on RNNs, it models local temporal and spa-
tial contexts in each layer with transition matrices for different
time intervals and geographical distances.

«DeepMove [9]: It is a multi-modal embedding RNN that can
capture the complicated sequential transitions by jointly embedding
the multiple factors that govern the human mobility.

Among these baselines, RICK and MPR are heuristic search based
methods, CTRR is a machine learning method, and STRNN and
DeepMove are deep learning methods. The parameters in all the
models have been optimized using the validation set.

I-#gbaseline, 4o RIZA FFR LI, T XA
KA. EXHUEZLY.

Rz AT
ARG T

2+

o

— Fbaseline, ikigEH —A



Table 2: The categorization of the comparison methods.

o 3tk ik

Our baselines have a comprehensive coverage of the related
models. To summarize, we categorize the baselines into eight groups
shown in Table 2, according to the task orientation, with/without
KB and with/without neural models.

2 I3k - (Method) 5 %

| Tasks || KB | Neural (No) | Neural (Yes) |
G 1 Yes | — CKE
enera ~No T BPR —
Sequential Yes | — RUM, GRUF, KSR
4 No | FPMC GRU, GRU++
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6.2 Results and Analysis

We present the results of all the comparison methods in Table
1. First, heuristic search methods, i.e., RICK and MPR, perform
very well, especially the RICK method. RICK fully characterizes the
road network information and adopts the informed A* algorithm.
As a comparison, MPR mainly considers the modeling of transfer
network and uses a relatively simple BFS search procedure. Second,
the matrix factorization based method CTRR does not perform
better than RICK and MPR. A possible reason is that CTRR can not
well utilize the road network information. Besides, it has limited

capacities in learning complicated trajectory characteristics. In our
experiments, CTRR tends to generate short route recommendations,
giving very bad recall results for medium and long queries. Third,
deep learning method DeepMove performs very well among all the
baselines, while STRNN gives a worse performance. Compared with
STRNN, DeepMove considers more kinds of context information
and designs more advanced sequential neural networks. Finally, the
proposed model NASR is consistently better than all the baselines
in all cases, yielding very good performance even on long queries.

By summarizing these results, we can see heuristic search meth-
ods are competitive to solve the PRR task, especially when suitable
heuristics are used and context information is utilized. Besides, deep
learning is also able to improve the performance by leveraging the
powerful modeling capacity. Our proposed model NASR is able to
combine both the benefits of heuristic search and neural networks,
and hence it performs best among the comparison methods.
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Effect of the RNN Component. We first examine the effect of
the RNN component with different variants. We have incorporated
two kinds of attentions, namely inter- and intra-trajectory attention
in Section 5.2. Here, we consider three variants of the attention
mechanism for implementing g(-): without attention (NA), using
only intra-trajectory attention (IA) and using both intra- and inter-
trajectory attention (BA). Recall our RNN component is also able
to learn a vectorized representation for the moving state of users.
We further prepare a variant for verifying the effect of the learned

Effect of the Value Network. Predicting the estimated cost (i.e.,
h(-)) of a candidate location is especially important for our task
We use a value network for implementing h(-), which replaces the
traditional heuristics. We now examine the performance of differ-
ent variants for the value network. In this part, we fix the RNN
component as its optimal setting. Then we prepare four variants for
the value network as comparisons, including (1) ED using Euclid
distance as heuristics, (2) SP using the scalar product between the
embeddings of the candidate and destination locations, (3) o-GAT
using the original implementation of graph attention networks,
and (4) i-GAT using our improved GAT by incorporating context
information. Both variants (3) and (4) are trained using the same
TD learning method. In Fig. 2(b), it can be observed that the per-
formance rank is as follows: ED < SP < 0-GAT < i-GAT. We can
see that the simplest spatial distance baseline ED gives the worst
performance, which indicates simple heuristics may not work well
in our task. Graph attention networks are more effective to capture
structural characteristics from graphs. When incorporating context
information, our value network is able to outperform the variant
using original implementation.

Effect of Temporal Difference Learning Method. To learn our
model, an important technique we apply is the Temporal Differ-
ence (TD) method. For verifying the effectiveness of the n-step TD
method, we consider four variants for comparison, including (1)
SL which directly learns the actual distance between the candidate
location and the destination in a supervised way, (2) MC which
applies Monte Carlo method to generate sampled sequences and
trains the model with the cost of these sampled sequences [25], (3)
n-TD which uses a TD step number of 5. From Fig. 2(c), we can see
that the simplest supervised learning method performs worst. Since
the prediction involves multi-step moving process, it is not easy
to directly fit the distance using traditional supervised learning
methods. Compared with all the methods, we can see that the 5-TD
learning method is the most effective in our task. In our experi-
ments, we find that using a step number of 5 produces the optimal
performance.



2 I3k - (Method) 5 %

© REAB] T
— B B F AR LR 69 18k 2 work
— RG] FREBIR I, IR >R LR EE
) $2 It
— X ¥ 2 & Flntroduction &g & 5% »F
o F | F#4Eintroduction @ motivation



% 13 4 (Method) 5 i%

° "‘ﬁiéﬁﬂﬁﬁi
- BRRRANE, ZABSEARITHE
- B —NFE: —EABETE
— AIFE TR S5 AR E AR IR X
i
o R Eeik SRR A B G AR K — A, W AH 4T
- B—RE B R
s AARBFEBAW
« BHEBFE LAY T EIRUE
o KRB IRENFHER D
s RE BRI



2 I3k - (Method) 5 %

)

o T My F
g_cur_rei‘___:___o_____o____.
i freq=5 freq=35 freq=5 freq=5
: I
. I
: I
: i
1 freq=4 I.
i I
', |
1 g freq:4|.
= | :
Shortest path — = 1 |°1
Actual path = — R @ ¢
- Destination

Figure 3: Visualization of the learned association scores us-
ing improved graph attention networks. The colored circles
denote locations in the road network. A darker color indi-
cates alarger importance degree w.r.t. current location /; and

destination ;. “freq" denotes the visit frequency by the user
in historical trajectories.
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(c) Estimated costs by NASR

Figure 4: Visualization of the search procedure with the esti-
mated costs by the NASR model. In (c), red points have been

already explored and green points are candidate locations to
extend in A™ search algorithm.
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In NASR, the improved graph attention network is the core com-
ponent for modeling road network information. It can generate
informative node representations for encoding structural charac-
teristics. To see this, we present an illustrative example in Fig. 3. A
user is currently located at /; and moving towards the destination /.
For a candidate location [;, we compute a simple scoring formula:
;; ‘np+ n;; -nj,, where n.)s are the node representations learned
in Eq. (15). This formula measures the association degree of /; with
both current location and destination. For comparison, we plot
both the actual and shortest route. As we can see, the locations on
the actual route has a larger association weight than those on the
shortest route. By inspecting into the dataset, we find the shortest
route contains several side road segments that are possibly in traffic
congestion at the visit time. Another interesting observation is that
the user indeed visits the locations in the actual route more times in
historical trajectories. These observations indicate that our model
is able to learn effective node representations for identifying more
important locations to explore for the PRR task.

n

Next, we continue to study how the learned cost function helps
the search procedure in NASR. Figure 4 presents a sample trajectory
from a specific user. Given the source and destination, we need to
predict the actual route. By comparing Fig. 4(a) (the original search
space) and Fig. 4(b) (the reduced search space by NASR), it can be
seen that our model is able to effectively reduce the search space.
When zooming into a subsequence of this route, we further compare
the estimated cost values for two candidate locations (green points)
in Fig 4(c). Although the second location has a longer distance with
the explored locations, it is located on the main road that is likely
to lead to a better traffic condition. Our model is able to predict
a lower cost for the second location by effectively learning such
trajectory characteristics from road network and historical data.
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Figure 5: An interaction sequence from a sample user in music dataset. We use dark blue and red to indicate attributes of album
and singer respectively. We present the predictions of our model KSR on attribute weights and value entities. For attention
weights (top of the figure), we use color darkness to indicate the value of attention weights: darker is larger. For value entities
(bottom of the figure), we show the predicted ranklist of candidate entities for both attributes at time ¢; and t5 (using value
matrices of KV-MN at t; and t4). We highlight the correct entities in predicted ranklists with colored boxes.
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Attribute-level Interpretability. Fig. 5 presents an interaction
sequence of five records from a sample user. Each record consists
of two parts: the left part corresponds to the learned attention
weights and the right part corresponds to ground-truth information
of a song, including title, singer and album. First, the user started
with two songs from the same album, which followed the way of
listening by album. Then, she listened to two more songs from
another album. For the fifth song, the user switched to a third
album. The interesting point is that its singer is the same as that
of previous two songs. Hence, for the last three songs, the user
essentially followed a mixture of listening by album and listening
by singer. It is clear that our model has predicted a larger weight
on the attribute of album till the fourth record, and a larger weight
on the attribute of singer on the fifth song. This example indicates
the user preference is likely to be dynamic and evolving, and our
model is able to capture evolving preference over the attributes.
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Value-level Interpretability. Suppose it is already known some
attribute (e.g., album) plays the key role in determining the interac-
tion behavior of a user, can we further predict how the user will
select among a set of entities for that attribute (e.g., the selection of
the favorite album in candidate albums)? For convenience, we call
the entities (also in KB) corresponding to the attribute value of a RS
item value entities, e.g., Deafheaven is the value entity of attribute
singer for song The Pecan Tree. Recall we have a user-specific value
matrix in KV-MNs, which maintains the preference characteristic-
s of a user on some specific attribute. We expect a value vector
can reflect user preference over value entities for some attribute.
A value vector v} corresponds to a key vector k, on attribute a.
Since the value matrix is updated with KB embeddings of items
(Eq. 7 and 9), the learned value vectors v can be represented in the
same space as KB embeddings. Given an attribute, we can directly
compute L; distance between the embedding of a candidate value
entity (€.g., €peafheaven) and the user-specific value vector (e.g.,
?inger) from the previous timestamp. Then, we rank the candidate
value entities according to the L; distance and form a predication
ranklist. We present the illustration of value-level interpretation
at the bottom of Fig. 5. At the beginning (1), the value matrix is
not well learned. By training with more records, our value matrix
is able to dynamically trace the user preference on some specific
attribute. At the fifth record (t5), it correctly predicts the candidate
entities for both singer and album attributes at the first position.
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Personalized Route Recommendation (PRR) aims to generate
user-specific route suggestions in response to users’ route queries.
Early studies cast the PRR task as a pathfinding problem on graphs,
and adopt adapted search algorithms by integrating heuristic strate-
gies. Although these methods are effective to some extent, they
require setting the cost functions with heuristics. In addition, it is
difficult to utilize useful context information in the search proce-
dure. To address these issues, we propose using neural networks
to automatically learn the cost functions of a classic heuristic algo-
rithm, namely A" algorithm, for the PRR task. Our model consists
of two components. First, we employ attention-based Recurrent
Neural Networks (RNN) to model the cost from the source to the
candidate location by incorporating useful context information. In-
stead of learning a single cost value, the RNN component is able to
learn a time-varying vectorized representation for the moving state
of a user. Second, we propose to use a value network for estimating
the cost from a candidate location to the destination. For captur-
ing structural characteristics, the value network is built on top of
improved graph attention networks by incorporating the moving
state of a user and other context information. The two components
are integrated in a principled way for deriving a more accurate
cost of a candidate location. Extensive experiment results on three
real-world datasets have shown the effectiveness and robustness of
the proposed model.

w7
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With the revival of neural networks, many studies try to adapt
powerful sequential neural models, i.e., Recurrent Neural Networks
(RNN), to sequential recommendation. RNN-based networks encode
historical interaction records into a hidden state vector. Although
the state vector is able to encode sequential dependency, it still has
limited representation power in capturing complicated user prefer-
ence. It is difficult to capture fine-grained user preference from the
interaction sequence. Furthermore, the latent vector representation
is usually hard to understand and explain.

To address these issues, in this paper, we propose a novel knowl-
edge enhanced sequential recommender. Our model integrates the
RNN-based networks with Key-Value Memory Network (KV-MN).
We further incorporate knowledge base (KB) information to en-
hance the semantic representation of KV-MN. RNN-based models
are good at capturing sequential user preference, while knowledge-
enhanced KV-MNs are good at capturing attribute-level user pref-
erence. By using a hybrid of RNNs and KV-MN, it is expected to
be endowed with both benefits from these two components. The se-
quential preference representation together with the attribute-level
preference representation are combined as the final representa-
tion of user preference. With the incorporation of KB information,
our model is also highly interpretable. To our knowledge, it is the
first time that sequential recommender is integrated with external
memories by leveraging large-scale KB information.
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In this paper, we took the initiative to use neural networks to
automatically learn the cost functions in A* for the PRR task. We
first presented a simple A* solution for solving the PRR task, and
formally defined the suitable form for the search cost. Then, we
set up two components to learn the two costs respectively, i.e., the
RNN component for ¢g(-) and the value network for hA(-). The two
components were integrated in a principled way for deriving a more
accurate cost of a candidate location for search. We constructed
extensive experiments for verifying the effectiveness and robustness
of the proposed model.

Since road network information is not always available, as future
work, we will consider extending our model to solve the PRR task
without road networks. Currently, we focus on the PRR task. We
will also study whether our solution can be generalized to solve
other complex search tasks.
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Avoid informal or spoken language in scientific texts. Instead, use formal alternatives.
Examples of informal words and their formal alternatives are:

Informal Formal

e alotof e much, many

e do (verb) e perform, carry out, conduct
e big e large

e like e such as

e think e consider

e talk e discuss

e J|ook at e examine

e get e oObtain

e Kkeep e retain, preserve
e climb e ascend

e really e .. (leave out)

e things e .. (be precise)
In addition:

e Avoid contractions (“do not” instead of “don’t”)

e Avoid clichés (“this site is excellent for...” instead of “this site is the cream of the
crop for”)

e Avoid “one” as pronoun, use passive voice instead
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We appreciate the generosity of the anonymous reviewers. They provided many
insightful comments and helpful suggestions. We respond to each reviewer

separately.

Separate response
REVIEWER #1:
(1) Section 4.2.: To my taste, the description of quad max array is too verbose,
to the extent that one assumes that there is more to it than is actually the case.

A more formal definition like quadmax([i] =

max{input[4*i],input[4*i+1],input[4*i+2],input[r*i+3]} might be simpler to digest.

RESPONSE: We revised the manuscript accordingly.
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Technical Note Series Spring 201

Note 1: Varitional Methods for Latent Dirichlet Allocation

Version 1.0 Wayne Xin Zhao (batmanfly@gmail.com

Disclaimer: The focus of this note was to reorganize the content in the original Blei’s paper and add n
detailed derivations. For convenience, in some part, I fully copied Blei’s content. I hope it can help
beginners to vEM of LDA.

First of all, let us make some claims about the parameters and variables in the model.

Let K be the number of topics, D be the number of documents and V be the number of terms in
vocabulary. We use 4 to index a topic !, d to index a document 2, n index a word 3 and w (or v) to der
a word. In LDA, axx1 and Bxxy are model parameters, while @pyx and z ¢ are hidden variables.

As a variational distribution g(-), we use a fully factorized model, where all the variables are independe
governed by a different distribution,

q(0, z|v, 9) = q(0]7)a(z|9), (

where Dirichlet parameter vpxx and the multinomial parameters ¢ 5 are variational parameters. The tc
assignments of words and the documents are exchangeable, i.e., conditionally independent on the parame
(either model parameters or variational parameters). Note that all the variational distributions g(-) here
conditional distributions and should be written as ¢(-|w), for simplicity we write it as g(-).

The main idea is that we use variational expectation-maximization (EM): In the E-step variational EM,
use the variational approximation to the posterior described in the previous section and find the optimal
ues of variational parameters. In the M-step, we maximize the bound with respect to the model paramet
In a more condense way, we perform variational inference for learning variational parameters in E-step w
perform parameter estimation in M-step. These two steps alternate in a iteration. We will optimize the lo
bound w.r.t variational parameters and model parameters one by one, and this is to perform optimizat
using a coordinate ascent algorithm.

Note for pLSA and LDA-Version 1.1

Wayne Xin Zhao

March 2, 2011

1 Disclaimer

In this part of PLSA, I refer to [4, 5, 1]. In LDA part, I refer to [3, 2]. Due to
the limit of my English ability, in some place, I just copy the words from original
papers or notes. I’m sorry I don’t have time to get the approvement from these au-
thors. I would remove or rewrite all such parts later. This note is strictly for study-
ing instead of any other activies. Please just keep by yourself and don’t distribute it.
This note is done in two days, I didn’t have time for reviewing but straightforward
releasing it for possible materials of studying topic models. I would keep updating
this note and try to make the notations consistent and correct all the errors. If you
find any problem in it, feel free to contact me via batmanfly@gmail.com.

2 pLSA

2.1 Introduction

pLSA is one kind of mixture model. We assume that there are a collection of D
documents, denoted by C , and there are totally K latent topics, which are rep-
resented by a multinomial distribution over vocabulary and denoted by variable
zi € {21, .., 2k }. In this model, all the words w are assumed observed variables
while {2;}X | are unobserved.
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