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ABSTRACT
Heterogeneous information network. but also demonstrate its .
HAE’s source code and all data used in the paper are publicly
available1.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
. 2018. The Name of the Heterogenous graph neural networks. InWoodstock
’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock,
NY. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
introduction...

2 THE PROPOSED MODEL
In this section, we propose a novel semi-supervised graph neural
network for heterogeneous graph. Figure XXX presents the whole
framework of model. First, we propose heterogeneous similarity
attention to better integrate the similarity of nodes based on het-
erogeneous graph information with the weights of neighbor nodes.
and aggregate them to get the semantic-specific node embedding.
After that, ?model? fuses meta-paths through attention mechanism
to embed heterogeneous information networks and get the optimal
weighted combination of the semantic-specific node embedding for
the specific task.

2.1 Heterogeneous Similarity Attention
The input to our layer is a set of node features,h = {®h1, ®h2, · · · , ®hN },
®hi ∈ R

F , where N is the number of nodes, and F is the number of
features in each node.

Due to the heterogeneity of nodes, different types of nodes have
different feature spaces. Therefore, for each type of nodes, we de-
sign the type-specific transformation matrix Mβt to project the

1https://shengyp.github.io/hetero_graph/
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features of different types of nodes into the same feature space. The
projection process can be shown as follows:

h′i
βt = Mβt · hi (1)

where β is the set of meta-paths and βt is one of the meta-paths.hβti
represents the projected feature of node i obtained by transforming
the original feature hi under the guidance of the meta-path βt .

After that, we leverage node similarity matrix to learn the weight
among various kinds of nodes. The similarity of two nodes essen-
tially reflects the distance between the two in a certain metric space.
The values in the similarity matrix can be regarded as the weights
between neighboring nodes, which not only better reflects the het-
erogeneity of the network, but also explains the importance of the
neighboring nodes. Please note that the similarity of itself in the
similarity matrix is the largest, which also accords with the actual
situation in reality. The meta-path-based neighbors of node i in-
clude itself. The similarity of meta-path based node pair (i, j) can
be formulated as follows:

S
βt
i j =

2 × {ρ
βt
→j : ρ

βt
i→j ∈ Pβt }

|{ρ
βt
i→i : ρ

βt
i→i ∈ Pβt } + {ρ

βt
j→j : ρ

βt
j→j ∈ Pβt }|

(2)

Where S
βt
i j is the importance weight between node i and its

neighbor node j under the meta-path βt . {ρ
βt
i→j : ρβti→j ∈ Pβt }

is the number of connected paths between node i and node j in
the commuting matrix Pβt . Similarly, {ρβti→i : ρβti→i ∈ Pβt } and

{ρ
βt
j→j : ρ

βt
j→j ∈ Pβt }. Neighbor node similarity calculation is

defined in two parts: (1) the semantic overlap in the numerator,
which is defined by the number of meta-paths between node i and
node j ; and (2) the semantic broadness in the denominator, which
is defined by the number of total meta-paths between themselves.
Therefore, we can give a SimPath distance with weights for any
two connected node.

Then, the meta-path based embedding of node i can be aggre-
gated by the neighbor’s projected features with the corresponding
coefficients as follows:

z
β
i = σ (

∑
j ∈N β

i

S
β
i j · h

′
j
β ) (3)

where zβi is the learned embedding of node i for the meta-path
β . Every node embedding is aggregated by its neighors. Since the
attention weight Sβi j is generated for single meta-path, it is semantic-
specific and able to caputre one kind of semantic information.

Since heterogeneous graph present the property of scale free,
the variance of graph data is quite high. To tackle the above chal-
lenge, we extend heterogeneous similarity attention to multihead
attention so that the training process is more stable. Specially, if
we perform multi-head attention on the final (prediction) layer of
the network, we employ averaging, and delay applying the final
nonlinearity (usually a softmax or logistic sigmoid for classification
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Figure 1: Overview of HAE. CESI first acquires side information of noun and relation phrases of Open KB triples. In the second
step, it learns embeddings of these NPs and relation phrases while utilizing the side information obtained in previous step.
In the third step, CESI performs clustering over the learned embeddings to canonicalize NP and relation phrases. Please see
Section 3 for more details.

problems) until then:

z
β
i = σ (

1
K

K∑
K=1

∑
j ∈N β

i

S
β
i j · h

′
j
β ) (4)

Given the meta-path set {β1, β2, · · · , βT } , after feeding node fea-
tures into heterogeneous similarity attention, we can obtain T
groups of semanticspecific node embeddings, denoted as {zβ1 , zβ2 ,
· · · , zβT }.

3 EXPERIMENTS
3.1 Experimental Setup

Datasets. Our methods are evaluated on the following datasets.
• DBLP. This is a dataset from DBLP2, which contains 14,328
papers (P), 4,057 authors (A), 20 conferences (C), 8,789 terms
(T). We label each author’s research area(Database, Data
Mining, AI, Information Retrieval) according to the confer-
ences they submitted. Author features are the elements of a
bag-of-words represented of keywords.

• IMDB3. This is a subset of IMDBwhich contains 3,627movies
(M), 4,340 actors (A), 1,714 directors (D) and 11 content rat-
ing (R). The movies are divided into three classes (Action,
Comedy, Drama) according to their genre. Movie features
correspond to elements of a bag-of-words represented of
plots.

• HUAWEI4. This is a dataset from HUAWEI, which contains
4,200 users (U), 6,131 applications (A) and 40 Types (T). We la-
bel each user according to their age, user features extraction
is based on behavioral attributes and emotional information.

• Douban5. Here we extract a dataset of Douban which con-
tains 13,367 users (U), 12,677 movies (M), 2,753 groups (G),

2https://dblp.uni-trier.de
3https://www.imdb.com
4https://www.imdb.com
5https://movie.douban.com

349 locations (L), 2,449 directors (D), and 6,311 actors (A).
We set the type with the most views per user as the label.

Baseline algorithms.We compare HAE to a suite of classic and
state-of-the-art baselines, as follows:

• Multi-layer perceptron (MLP) [7]: This is a feedforward neu-
ral network that has . Here, we adopt a four-layer connected
neural network.

• Deepwalk [4]: A random walk based network embedding
method for homogeneous network. Here we run DeepWalk
on whole HIN and ignore the heterogeneity of nodes.

• Metapath2vec [1]: This is a network.
• GCN [3]: This is a network.
• GAT [9]: This is a semi-supervised neural network which
considers the attention mechanism on the homogeneous
graph.

• HAN [11]: This is a network.
• GTN []: This is a.
• OursSubInput . This is the variant of our method. The col-
lection {(xhypo , yhyper ), (xhypo , dy ). We use the sub-script
SubInput to denote this setting.

Metrics. Each author must be defined separately for accurate meta-
data identification.

Implementation details. We implement HAN by using Tensor-
flow6. The models are trained on NVIDIA Tesla P100. We randomly
choose 80% of samples as the training data, 10% as validation and
10% for testing on each dataset. We initialize the hyper-parameters
for the baselines by following the corresponding paper and carefully
tune them to ensure that they achieve the optimal performance.

A more comprehensive description of experimental settings can
be found in the supplementary material7.

6https://www.tensorflow.org
7The supplementalmaterial is available at https://shengyp.github.io/hetero_graph/supplemental.pdf
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Figure 2: The meta-paths and meta-graphs of each dataset used in the experiments

3.2 Performance on node classification and
clustering tasks

As for our GraphHeat model, it outperforms all baseline methods,
achieving state-of-the-art results on all the four datasets.

The node classification results of different methods over the
DBLP dataset are shown in Figure 1.

The clustering results of different methods over the DBLP dataset
are shown in Figure 2.

3.3 Influence of hyper-parameter d and E
Influence of Hyper-parameter

3.4 Case study
We conduct a case study to demonstrate the effectiveness of learned
weight information.

4 RELATEDWORKS
4.1 Network representation embedding
Here we give a brief introduction to existing network representa-
tion learning (NRL) methods [12], this method is proposed to embed
net-work into a low dimensional space while preserving the net-
work structure and property so that the learned embeddings can be
applied to the downstream network tasks. DeepWalk [4] employs
Skip-gram model, which is originally used in word representation
learning, on random walks for NRL. node2vec [2] further gener-
alizes DeepWalk with Breadth First Search (BFS) and Depth-First
Search (DFS) on random walks. LINE models [8] first-order and
second-order proximities between vertices for learning large-scale
network embeddings. M-NMF [10] uses matrix decomposition to
learn network structure characteristics.

4.2 Heterogeneous graph embedding
However, all these algorithms are proposed for the homogeneous
graphs [5? ], heterogeneous graph embedding mainly focuses on
preserving the meta-path based structural information. Metap-
ath2vec [1] designs a meta-path based random walk and utilizes
skip-gram to perform heterogeneous graph embedding. However,
metapath2vec can only utilize one meta-path and may ignore some
useful information. [13] proposes a embeddingmodelmetagraph2vec,
where both the structures and semantics are maximally preserved
for malware detection. [6] proposes meta-graph-based network
embedding models, which simultaneously considers the hidden
relations of all meta information of a meta-graph.

5 CONCLUSION
In this paper, we proposed HIV, a novel method for canonical-
izing Open KBs using learned embeddings and side information.
CESI solves a joint objective to learn noun and relation phrase em-
beddings, while utilizing relevant side information in a principled
manner. These learned embeddings are then clustered together to
obtain canonicalized noun and relation phrase clusters. In this pa-
per, we also propose ReVerb45K, a new and larger dataset for Open
KB canonicalization. Through extensive experiments on this and
other real-world datasets, we demonstrate HIV’s effectiveness over
state-of-the-art baselines.
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Table 1: The performance of different methds on the four datasets. The best performance in each column is boldfaced (the
higher, the better). Improvements over the best baseline are shown in the last row.

Datasets DBLP IMDB Douban Huawei
Measures Micro Macro FMI Micro Macro FMI Micro Macro FMI Micro Macro FMI
SVM 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2
MLP 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2

XGboost 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
Deepwalk 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2

Metapath2vec 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
GCN 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
GAT 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
HAN 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
GTN 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2

1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.23
1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.23

Ours 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23
Improv. 4.84% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 1.56%

Table 2: The performance of different methds on the four datasets. The best performance in each column is boldfaced (the
higher, the better). Improvements over the best baseline are shown in the last row.

Datasets DBLP IMDB Douban Huawei
Measures Micro Macro FMI Micro Macro FMI Micro Macro FMI Micro Macro FMI
SVM 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2
MLP 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2

XGboost 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
Deepwalk 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2

Metapath2vec 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
GCN 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
GAT 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
HAN 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2 1.2
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Figure 3: Visualization results on DBLP dataset. Each point indicates a author and its color indicates the research area.
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